
Linux on the ZedBoard

Tong Wu

February 29, 2016

Contents

1 The Basics of Running Linux on the ZedBoard 2
1.1 Introduction . 2
1.2 Booting Linux on the ZedBoard . 2

1.2.1 Preparing the ZedBoard and the SD-Card . 3
1.2.2 Booting the Zynq Device . 4
1.2.3 Connecting to the ZedBoard over SSH . 4

1.3 Configuring the FPGA at Runtime under Linux . 5
1.3.1 Creating a Simple GPIO Project Using Vivado . 5
1.3.2 Configuring the FPGA . 7

1.4 Interfacing with the FPGA using GPIO under Linux . 7
1.4.1 Creating a C/C++ Project in Xilinx SDK . 7

2 Building the Boot System from Scratch (Advanced) 9
2.1 Introduction . 9
2.2 Building the Device Tree Compiler . 9
2.3 Building Das U-Boot . 10

2.3.1 Configure for Booting Over the Network (Optional) 10
2.3.2 Building U-Boot . 11

2.4 Building the Linux Kernel . 11
2.5 Building the First Stage Boot Loader and Creating BOOT.bin 12

2.5.1 Building the FSBL . 12
2.5.2 Creating BOOT.bin . 12

2.6 Modifying the Root File System . 13
2.7 Setting Up the TFTP Server (Optional) . 13

1

Chapter 1

The Basics of Running Linux on the
ZedBoard

1.1 Introduction

The aim of this guide is to get you up and running with Linux on the ZedBoard. We will see how to boot
Linux on the ZedBoard so that we can access a bash shell over SSH, configure the FPGA at run-time under
Linux and execute a program to interface with the FPGA and toggle some LEDs.

First let’s see why we would want to run Linux on the ZedBoard;

• Linux provides a familiar programming model, such as thread management. Whereas when programming
on baremetal, it is difficult to perform separate tasks on multiple threads, Linux provides this functionality
for us in the form of processes.

• Easy access to the IP network using the built in Linux network stack.

• Interact with the device using SSH over the network. This is a much more stable alternative over
serial communications, which is the standard way of communication when programming baremetal
applications.

• File transfer using SCP, enables us to quickly transfer files over the network.

• Dynamic FPGA configuration, easily reconfigure the FPGA on the fly, no need for reboot.

For this guide, it is assumed that you have Xilinx Vivado and SDK 2015.4 installed. Additionally, for
Windows users PuTTY should be installed and for Linux users minicom should be installed.

1.2 Booting Linux on the ZedBoard

Now let’s refer to Figure 1.1 and take a look at how Linux is booted on the ZedBoard. When the ZedBoard
is powered on, the processor on the Zynq device loads into RAM a small, fixed number of bytes from the
start of a FAT formatted SD-Card. This small amount of data contains the First Stage Boot Loader (FSBL)
for the Zynq device. The purpose of the FSBL is to load the Primary Boot Loader, which in our case is Das
U-Boot, which is capable of booting the Linux kernel. Once the FSBL is loaded, the processor firmware sets
the program counter to the entry point of the FSBL. The FSBL then loads and executes Das U-Boot. In
order to successfully boot Linux, we need the Linux kernel itself, the Root File System (containing all our
programs and configurations) and the Device Tree (containing information about all the peripherals we have
on the ZedBoard). U-Boot will find these files on the SD-Card and load them into memory. U-Boot then sets

2

http://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

the program counter to the entry point of the Linux kernel. Now the Linux kernel will configure and load
the correct device drivers according to the Device Tree and then mount the root file system. Then the init
process (found in the Root File System) is executed and an SSH server is started.

First Stage Boot
Loader

Das U-Boot LinuxProcessor Firmware

Power On

First Stage Boot
Loader (FSBL) is

loaded into RAM

The FSBL is
executed

Das U-Boot is
loaded into RAM

Das U-Boot is
executed

The Linux Kernel is
loaded into RAM

The Device Tree is
loaded into RAM

The Root File
System RAM Disk is

loaded into RAM

The Linux Kernel is
executed

Linux drivers are
configured using

Device Tree
information

Root File System is
mounted

The INIT process is
executed

The SSH Server is
started

Figure 1.1: Boot Sequence for Linux on the Zynq Device

1.2.1 Preparing the ZedBoard and the SD-Card

First we can download the pre-built images provided by Xilinx. We will be using the 2015.4 release for the
ZedBoard; http://www.wiki.xilinx.com/file/detail/2015.4-zed-release.tar.xz

Once downloaded and extracted, you will see the following files;

• fsbl.elf : FSBL stands for “First Stage Boot Loader” and is the first program that will be executed by
the processor. In our case, the main purpose of the FSBL is to load Das U-Boot.

• u-boot.elf : U-Boot is a boot loader capable of booting Linux. U-Boot itself is loaded by the FSBL.

• devicetree.dtb: The device tree is a file that is read by the Linux Kernel as it is starting up. It
describes which peripheral devices are available to the system and how to access them (ie. where in the
address space does its control registers lie).

• boot.bin: The boot.bin is the file which contains both the fsbl.elf and u-boot.elf. This is the actual
file that is read from the SD-Card, whereas the separate fsbl.elf and u-boot.elf files are supplied for
completeness.

• uImage: The uImage is the compiled Linux kernel wrapped with u-boot headers and is loaded by
U-Boot.

• uramdisk.image.gz: This file is a filesystem image which will be loaded by the Linux kernel as a
ramdisk and will act as the root file system.

3

http://www.wiki.xilinx.com/file/detail/2015.4-zed-release.tar.xz

Prepare your SD-Card by formatting it to the FAT-32 format. Then copy boot.bin, uImage, uramdisk.image.gz
and devicetree.dtb to the SD-Card. Now the SD-Card is ready to be inserted into the ZedBoard.

Now let’s make sure the ZedBoard is configured for booting with the SD-Card. Make sure the jumpers are
set to the correct positions;

• JP6 - Shorted

• JP7 - GND

• JP8 - GND

• JP9 - 3V3

• JP10 - 3V3

• JP11 - GND

Connect the ZedBoard to your network (ie. to your router/switch or directly to your computer) using an
Ethernet cable and connect the UART port to your computer using USB. Now we are ready to boot Linux
on the ZedBoard.

1.2.2 Booting the Zynq Device

Power on the ZedBoard and open a serial terminal in order to monitor the bootup process. On Windows we
can use PuTTY, select serial under Connection Type, set the Speed (baud rate) to 115200. On Linux we
can use minicom by entering the following command in the terminal window;

sudo minicom -D /dev/ttyACM0/ -b 115200

If you see an error saying that the device was not found, check that you have entered the correct COM port
on Windows or the correct tty device on Linux. Otherwise, once we’re in our serial terminal, power off and
power on the ZedBoard, so we can see the U-Boot debug messages from the beginning. If all goes well and
the bootup has completed, we will see the prompt;

zedboard -zynq7 login:

We can type root to log in and then we are in the Linux root user shell, we can issue any standard Linux
shell commands here. We can explore the filesystem using ls and cd for example.

1.2.3 Connecting to the ZedBoard over SSH

Interacting with Linux over a UART serial connection is not stable, we should instead log in using SSH over
the network. If you have a DHCP server running on your network, that is, you have your ZedBoard plugged
into your router, an IP address should already be assigned to your board. You can find your IP address by
typing this command in your serial terminal;

ifconfig

If the Zynq device can not find a DHCP server on your network (ie. you don’t see an IP address under
ifconfig), then we must set up a static address. If the ZedBoard is plugged into your computer directly, then
we must setup a static address for both the Ethernet adapter on your computer and on the ZedBoard. For
Linux users, we can simply issue the following command on the host computer;

ifconfig eth0 192.168.33.1

4

Windows users can use the Network Connections utility under the control panel. Now in our serial terminal,
we set a static address for the Ethernet adapter on the ZedBoard;

ifconfig eth0 192.168.33.2

Once we have obtained the IP address, we can try connecting to it from our host computer. On Windows, we
can use PuTTY again in SSH mode and on Linux we can issue the following command;

ssh root@{ZedBoard_IP_Address}

We should be able to log in without a password and be greeted with a standard Linux shell. NOTE: To
permanently assign a static IP address to the Zynq device, you must mount and edit the Root
File System RAM disk on a Linux host. Please check section 2.6 for details on how to modify
the root file system

1.3 Configuring the FPGA at Runtime under Linux

1.3.1 Creating a Simple GPIO Project Using Vivado

Let’s open Vivado and create a Project called “PS LED”, targeting the ZedBoard. Create a new Block
Design called “system” and add the “ZYNQ7 Processing System” IP block. Now, run block automation
leaving all the settings at their defaults. Double click the IP block to access the customization menu, then
click on “MIO Configuration”, then “I/O Peripherals”, “GPIO”, check “EMIO GPIO”, set the width to 8
(Note that the maximum width is 64) and click “OK”. Now a new port will show up on the block diagram
called “GPIO 0” and if we expand this bundled port we will see it is made up of an 8-bit wide input port, an
8-bit wide output port and an 8-bit wide tri-state port. In fact this is very similar to the GPIO interface
found on the AXI GPIO IP block, except it is implemented on the hard processor side of the Zynq device
and thus does not take up any reconfigurable resources on the FPGA. Let’s connect it up to some LEDs and
switches. Right click on both GPIO I and GPIO O and select Make External. This will create two external
ports, GPIO I and GPIO O. Now let’s configure these ports so that Vivado knows to connect them to the
LEDs and switches. Select the GPIO I port and under External Port Properties, change the NAME field
to sws 8bits. Likewise, for the GPIO O port change the NAME field to leds 8bits. We must now assign
physical I/O pins on the FPGA to our led and switch signals, by creating a constraints file. Click on Add
Sources, Add or create constraints and create a new constraints file called ZedBoard Master.xdc. In this
file add the following lines;

set_property IOSTANDARD LVCMOS33 [get_ports {leds_8bits [7]}]

set_property IOSTANDARD LVCMOS33 [get_ports {leds_8bits [6]}]

set_property IOSTANDARD LVCMOS33 [get_ports {leds_8bits [5]}]

set_property IOSTANDARD LVCMOS33 [get_ports {leds_8bits [4]}]

set_property IOSTANDARD LVCMOS33 [get_ports {leds_8bits [3]}]

set_property IOSTANDARD LVCMOS33 [get_ports {leds_8bits [2]}]

set_property IOSTANDARD LVCMOS33 [get_ports {leds_8bits [1]}]

set_property IOSTANDARD LVCMOS33 [get_ports {leds_8bits [0]}]

set_property IOSTANDARD LVCMOS25 [get_ports {sws_8bits [7]}]

set_property IOSTANDARD LVCMOS25 [get_ports {sws_8bits [6]}]

set_property IOSTANDARD LVCMOS25 [get_ports {sws_8bits [5]}]

set_property IOSTANDARD LVCMOS25 [get_ports {sws_8bits [4]}]

set_property IOSTANDARD LVCMOS25 [get_ports {sws_8bits [3]}]

set_property IOSTANDARD LVCMOS25 [get_ports {sws_8bits [2]}]

set_property IOSTANDARD LVCMOS25 [get_ports {sws_8bits [1]}]

set_property IOSTANDARD LVCMOS25 [get_ports {sws_8bits [0]}]

set_property PACKAGE_PIN U14 [get_ports {leds_8bits [7]}]

5

set_property PACKAGE_PIN U19 [get_ports {leds_8bits [6]}]

set_property PACKAGE_PIN W22 [get_ports {leds_8bits [5]}]

set_property PACKAGE_PIN V22 [get_ports {leds_8bits [4]}]

set_property PACKAGE_PIN U21 [get_ports {leds_8bits [3]}]

set_property PACKAGE_PIN U22 [get_ports {leds_8bits [2]}]

set_property PACKAGE_PIN T21 [get_ports {leds_8bits [1]}]

set_property PACKAGE_PIN T22 [get_ports {leds_8bits [0]}]

set_property PACKAGE_PIN M15 [get_ports {sws_8bits [7]}]

set_property PACKAGE_PIN H17 [get_ports {sws_8bits [6]}]

set_property PACKAGE_PIN H18 [get_ports {sws_8bits [5]}]

set_property PACKAGE_PIN H19 [get_ports {sws_8bits [4]}]

set_property PACKAGE_PIN F21 [get_ports {sws_8bits [3]}]

set_property PACKAGE_PIN H22 [get_ports {sws_8bits [2]}]

set_property PACKAGE_PIN G22 [get_ports {sws_8bits [1]}]

set_property PACKAGE_PIN F22 [get_ports {sws_8bits [0]}]

NOTE: Whitespace matters! Make sure there is no whitespace between the port name and
the indices/brackets. If you get critical warnings during synthesis, please double check the
whitespace!

Finally, connect M AXI GP0 ACLK to FCLK CLK0, or else the project will fail to synthesize. Your project should
now match Figure 1.2.

sws_8bits[7:0]

leds_8bits[7:0]

DDR

FIXED_IO

processing_system7_0

ZYNQ7 Processing System

GPIO_0

GPIO_I[7:0]

GPIO_O[7:0]

GPIO_T[7:0]

DDR

FIXED_IO

USBIND_0

M_AXI_GP0

TTC0_WAVE0_OUT

TTC0_WAVE1_OUT

TTC0_WAVE2_OUT

M_AXI_GP0_ACLK

FCLK_CLK0

FCLK_RESET0_N

Figure 1.2: Final Block Design

Now, we can create an HDL wrapper for the block design by right clicking on system.bd in Design Sources
and selecting Create HDL Wrapper. Choose Let Vivado manage wrapper and auto-update and click OK. Now
we can implement the design and generate the bitstream. Once that is done, we can confirm that we have
used no reconfigurable logic resources (ie. flip-flops, LUTs) other than routing resources for this project, by

6

checking the Utilization - Post Implementation pane in the Project Summary tab. We can find the generated
bitstream here;

{Project Parent }/ PS_LED/PS_LED.runs/impl_1/system_wrapper.bit

1.3.2 Configuring the FPGA

Now let’s upload the bitstream file to the Linux file-system on the ZedBoard. Windows users can use a
program like WinSCP and Linux users can simply enter the following command;

scp {Project Parent }/ PS_LED/PS_LED.runs/impl_1/system_wrapper.bit

root@{ZedBoard_IP_Address }:.

The transfer should be very quick and once it’s done, you will be able to see the bitstream file in your
/home/root directory. To configure the FPGA, simply run the following command in our SSH terminal;

cat system_wrapper.bit > /dev/xdevcfg

The xdevcfg device file is the Device Configuration Interface, which allows the Zynq Processing System to
configure the FPGA (ie. Programmable Logic). Like other Linux device files, we can access xdevcfg using
standard Input/Output system calls, such as Open, Read, Write and Close. The command above dumps
the contents of our bitstream onto the xdevcfg device which configures the FPGA. You should now see the
DONE LED light up, signalling that the FPGA has been configured.

1.4 Interfacing with the FPGA using GPIO under Linux

1.4.1 Creating a C/C++ Project in Xilinx SDK

Xilinx has provided an easy way for compiling programs for the Zynq Device, through the Xilinx SDK. Let’s
open the XSDK and create a new application project;

File -> New -> Application Project

Set the Project name to GPIO SW LED, set OS Platform to linux, make sure the Processor Type is
ps7 cortexa9, Language as C and click next. Select Linux Empty Application from Available Templates
and click finish. Now in the Project Explorer, an empty project has been created, add a new file called
main.c in the src directory and add the following code to it;

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <fcntl.h>

#include <unistd.h>

// The first EMIO GPIO pin is number 960 under Linux on the ZedBoard

// GPIO base address is 906 and EMIO starts 54 after that.

// To check the GPIO base address run;

// "cat /sys/class/gpio/gpiochip906/base"

int main() {

int fd;

// export EMIO GPIO 0

fd = open("/sys/class/gpio/export", O_WRONLY);

7

write(fd, "960", 3);

close(fd);

// Set EMIO GPIO 0 to output mode

fd = open("/sys/class/gpio/gpio960/direction", O_WRONLY);

write(fd, "out", 3);

close(fd);

// Set EMIO GPIO 0 to high , turn on LED

fd = open("/sys/class/gpio/gpio960/value", O_WRONLY);

write(fd, "1", 1);

close(fd);

// unexport EMIO GPIO 0

fd = open("/sys/class/gpio/unexport", O_WRONLY);

write(fd, "960", 3);

close(fd);

// export EMIO GPIO 1

fd = open("/sys/class/gpio/export", O_WRONLY);

write(fd, "961", 3);

close(fd);

// Set EMIO GPIO 1 to input mode

fd = open("/sys/class/gpio/gpio961/direction", O_WRONLY);

write(fd, "in", 2);

close(fd);

// Read EMIO GPIO 1, read switch

fd = open("/sys/class/gpio/gpio961/value", O_RDONLY);

char switch_value;

read(fd , &switch_value , 1);

printf("Switch [1]: %c\n", switch_value);

close(fd);

// unexport EMIO GPIO 1

fd = open("/sys/class/gpio/unexport", O_WRONLY);

write(fd, "961", 3);

close(fd);

return 0;

}

This program exports (reserves) GPIO 960, which is the first EMIO GPIO signal, then the program sets the
direction of GPIO 960 to output and writes a one to turn LED0 on, then GPIO 960 is unexported (freed).
The program then exports GPIO 961, sets the direction to input and reads the input value of EMIO GPIO 1
(which we connected to SW1). Upon saving the file, the SDK will attempt to compile the project. Under the
Binaries directory within the project, we can see a GPIO SW LED.elf file. This is the compiled program
which we want to execute on the ZedBoard. Navigate to the directory containing GPIO SW LED.elf and
execute the following command in order to upload the file to the ZedBoard;

scp ./ GPIO_SW_LED.elf root@{ZedBoard_IP_Address }:.

Windows users may use WinSCP. Now in our Zynq shell we should be able to see GPIO SW LED.elf by
running ls and execute it by running ./GPIO SW LED.elf. We should now see LED0 light up and the
position of SW1 printed in our terminal. Note that as soon ass we export any GPIO pins, the output of a
particular pin is latched to the input of that pin. That is why LED1 lights up when we export the GPIO
while SW1 is in the on position.

8

Chapter 2

Building the Boot System from
Scratch (Advanced)

2.1 Introduction

In this section we will manually build the boot system for the Zynq device. The motivation for doing this
may be that you want to boot the Linux kernel over the network, compile the Linux kernel with different
parameters, compile your own custom driver along with the kernel or just for fun. We will;

• Build the Device Tree Compiler

• Build Das U-Boot

• Build the Linux kernel

• Generate the First Stage Boot Loader using the Xilinx SDK

• Create the boot.bin by combining the FSBL with U-Boot

Lets first set up a directory for our project;

mkdir -p ~/ZedBoard_Linux/Boot_System
cd ~/ZedBoard_Linux/Boot_System

2.2 Building the Device Tree Compiler

Now we need the Device Tree Compiler required to build Das U-Boot. We can obtain the DTC from the
Xilinx repositories;

cd ~/ZedBoard_Linux/Boot_System
git clone https ://git.kernel.org/pub/scm/utils/dtc/dtc.git

After it has been downloaded, we can build the DTC;

cd dtc

make

Let’s add this to our PATH variable so that the U-Boot build system can access it;

9

export PATH=$PATH:$PWD

2.3 Building Das U-Boot

Let’s start by downloading the U-Boot source code from the Xilinx Repositories;

cd ~/ZedBoard_Linux/Boot_System
git clone https :// github.com/Xilinx/u-boot -xlnx.git

Navigate to the U-Boot directory;

cd u-boot -xlnx

When U-Boot starts up, it will copy the Linux Kernel from external memory to RAM, For the Zynq Device,
it is possible to load the Linux kernel from these locations; MMC (MultiMediaCard), eMMC (Embedded
MultiMediaCard), SD Card, NOR Flash, QSPI Flash, NAND Flash, JTAG or through TFTP over the
network. The build method for booting Linux from SD-Card and over the network is described below. If you
wish to boot solely from the SD-Card (default behaviour) then skip the following subsection.

2.3.1 Configure for Booting Over the Network (Optional)

If you wish to configure U-Boot to fetch Linux from a TFTP server, first we must modify the default U-Boot
configuration for the Zynq device. Open the following file with your favourite text editor;

vim ~/ZedBoard_Linux/Boot_System/u-boot -xlnx/include/configs/zynq -
common.h

Search for the following line of text;

"sdboot=if mmcinfo; then " \

The indented section below it specifies which commands U-Boot will execute once it has loaded from a
MultiMediaCard, in our case, the SD-Card. In fact, the First-Stage-Boot-Loader will inform U-Boot exactly
where it booted from. Currently, it will look for the operating system kernel, device tree and the root file
system ramdisk on the SD-Card using the load mmc 0 command. They will be loaded into specific addresses
in RAM designated by the load address variables and booted using the bootm command;

"sdboot=if mmcinfo; then " \

"run uenvboot; " \

"echo Copying Linux from SD to RAM... && " \

"load mmc 0 ${kernel_load_address} ${kernel_image} && " \

"load mmc 0 ${devicetree_load_address} ${devicetree_image} && " \

"load mmc 0 ${ramdisk_load_address} ${ramdisk_image} && " \

"bootm ${kernel_load_address} ${ramdisk_load_address} ${
deivcetree_load_address }; " \

"fi\0" \

To boot over the network, we must change it to the following;

10

"sdboot=if mmcinfo; then " \

"run uenvboot; " \

"echo Copying Linux from SD to RAM... && " \

"tftpboot ${kernel_load_address} 10.10.70.101:${kernel_image} && "

\

"tftpboot ${devicetree_load_address} 10.10.70.101:${
devicetree_image} && " \

"tftpboot ${ramdisk_load_address} 10.10.70.101:${ramdisk_image} &&

" \

"bootm ${kernel_load_address} ${ramdisk_load_address} ${
deivcetree_load_address }; " \

"fi\0" \

As you can see, we have replaced the load mmc 0 command with tftpboot and prefixed our kernel,
devicetree and ramdisk image variables with our TFTP server address. This commands U-Boot to fetch the
images from the root directory on our TFTP server.

2.3.2 Building U-Boot

Now we can build U-Boot, navigate to the U-Boot directory;

cd ~/ZedBoard_Linux/Boot_System/u-boot -xlnx

We configure the build system to build for the Zedboard and build;

make zynq_zed_config

make

If you have another board (ie. not the ZedBoard), check the following directory to see if there is a configuration
file for your board;

ls ~/ZedBoard_Linux/Boot_System/u-boot -xlnx/include/configs

Once the make completes, an ELF file u-boot will be generated. Copy this to the folder we made to contain
our completed files and append the .elf extension;

cp ./u-boot ~/ZedBoard_Linux/Boot_System/Complete/u-boot.elf

The mkimage tool needed for wrapping the Linux kernel with u-boot headers will be generated in the tools
directory, so we need to add this to our path;

export PATH=$PATH:$PWD/tools

2.4 Building the Linux Kernel

Let’s download the Linux kernel source code;

cd ~/ZedBoard_Linux/Boot_System
git clone https :// github.com/Xilinx/linux -xlnx.git

Now we can finally build the Linux kernel.

11

cd linux -xlnx

make ARCH=arm xilinx_zynq_defconfig

This configures the build config to the default settings that Xilinx has set for the Zynq device. If you wish to
configure this manually, you may run;

make ARCH=arm menuconfig

We can now compile the kernel;

make ARCH=arm UIMAGE_LOADADDR =0 x8000 uImage

This will generate an uImage which is the compiled linux kernel wrapped with an U-Boot header. You can
find and copy it from the following directory;

cp ./arch/arm/boot/uImage ~/ZedBoard_Linux/Boot_System/Complete

Generated along with the kernel image is the device tree. We need to compile it into binary format;

dtc -o ~/ZedBoard_Linux/Boot_System/Complete/devicetree.dtb -O dtb ./

arch/arm/boot/dts/zynq -zed.dts

2.5 Building the First Stage Boot Loader and Creating BOOT.bin

2.5.1 Building the FSBL

Let’s open the Xilinx SDK by issuing the following command in the terminal;

xsdk

When the XSDK GUI opens, we will create a new FSBL application project;

File -> New -> Application Project

Set the project name to be FSBL. Then, under the Hardware Platform drop down menu, select zed hw platform.
Make sure the OS Platform is set to Standalone. Now click next, select Zynq FSBL under Available
Templates and click Finish.

Now a new FSBL project will be created and in the Binaries directory, we can find the FSBL.elf and move
it our Complete directory.

2.5.2 Creating BOOT.bin

In Xilinx SDK, click on Xilinx Tools, then Create Boot Image. Under Boot Image Partitions click Add and
add the FSBL.elf file. Then click Add again, add the u-boot.elf file and then press create the BOOT.bin
image. Copy this to our Complete directory.

12

2.6 Modifying the Root File System

In this section, we will use the default Root File System RAM disk which can be downloaded as a part of the
Xilinx official release here; http://www.wiki.xilinx.com/file/detail/2015.4-zed-release.tar.xz

We must unwrap the U-Boot headers from the image;

dd if=uramdisk.image.gz bs=64 skip=1 of=ramdisk.image.gz

We can extract the Root File System image using gzip so we can modify it;

mkdir tmp_mnt

gunzip ramdisk.image.gz | sudo sh -c ’cd tmp_mnt/ && cpio -i’

cd tmp_mnt

After we have finished modifying, we can unmount and compress the image;

sh -c ’cd tmp_mnt/ && sudo find . | sudo cpio -H newc -o’ | gzip -9 >

ramdisk.image.gz

Now we have to wrap the compressed image with the U-Boot headers again;

mkimage -A arm -T ramdisk -C gzip -d ramdisk.image.gz uramdisk.image.

gz

2.7 Setting Up the TFTP Server (Optional)

This step only applies if you want to boot Linux over the network and you have compiled U-Boot for booting
over the network. If you have not installed a TFTP server then you must do so now, we will be using the
tftpd-hpa package;

sudo apt -get install tftpd -hpa

The TFTP server will serve any files placed in the following directory;

ls -l /var/lib/tftpboot

We need to copy our compiled Linux kernel, the device tree and the root file system ramdisk to this location;

cp ~/ZedBoard_Linux/Boot_System/Complete/uImage /var/lib/tftpboot

cp ~/ZedBoard_Linux/Boot_System/Complete/devicetree.dtb /var/lib/

tftpboot

cp ~/ZedBoard_Linux/Boot_System/Complete/uramdisk.image.gz /var/lib/

tftpboot

To start the TFTP server, simply issue;

sudo service tftpd -hpa restart

Now when U-Boot is loaded on the ZedBoard, U-Boot will fetch files needed to boot Linux from the TFTP
server.

13

http://www.wiki.xilinx.com/file/detail/2015.4-zed-release.tar.xz

	The Basics of Running Linux on the ZedBoard
	Introduction
	Booting Linux on the ZedBoard
	Preparing the ZedBoard and the SD-Card
	Booting the Zynq Device
	Connecting to the ZedBoard over SSH

	Configuring the FPGA at Runtime under Linux
	Creating a Simple GPIO Project Using Vivado
	Configuring the FPGA

	Interfacing with the FPGA using GPIO under Linux
	Creating a C/C++ Project in Xilinx SDK

	Building the Boot System from Scratch (Advanced)
	Introduction
	Building the Device Tree Compiler
	Building Das U-Boot
	Configure for Booting Over the Network (Optional)
	Building U-Boot

	Building the Linux Kernel
	Building the First Stage Boot Loader and Creating BOOT.bin
	Building the FSBL
	Creating BOOT.bin

	Modifying the Root File System
	Setting Up the TFTP Server (Optional)

