
Vitis Unified Software
Platform Documentation

Application Acceleration Development

UG1393 (v2020.1) August 20, 2020

https://www.xilinx.com

Revision History
Starting in 2020.1, the revision history is documented separately in the following areas:

• Section I: Introduction to the Vitis Unified Software Platform

• Section II: Developing Applications

• Section III: Building and Running the Application

• Section IV: Profiling, Optimizing, and Debugging the Application

• Section V: Vitis Environment Reference Materials

• Section VI: Using the Vitis Analyzer

• Section VII: Using the Vitis IDE

• Section VIII: Using Vitis Embedded Processor Platforms

• Section IX: Migrating to a New Target Platform

Revision History

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=2

Table of Contents
Revision History...2

Section I: Introduction to the Vitis Unified Software Platform..........11

Chapter 1: Vitis 2020.1 Software Platform Release Notes.................12
What's New...12
Supported Platforms... 20
Changed Behavior..20
Known Issues..21

Chapter 2: Installation.. 22
Installation Requirements...22
Vitis Software Platform Installation... 25

Chapter 3: Introduction to the Vitis Environment for
Acceleration..30
Accelerated Flow Application Development Using the Vitis Software Platform...........30
Execution Model...32
Build Process...34
Tutorials and Examples... 37

Chapter 4: Methodology for Accelerating Applications with
the Vitis Software Platform... 39
Introduction.. 39
Methodology for Architecting a Device Accelerated Application...................................42
Methodology for Developing C/C++ Kernels.. 55

Section II: Developing Applications... 69

Chapter 5: Programming Model.. 70
Device Topology... 70
Kernel Properties... 70

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=3

Chapter 6: Host Application... 73
Setting Up the OpenCL Environment.. 73
Executing Commands in the FPGA...78
Post-Processing and FPGA Cleanup...90
Summary... 91

Chapter 7: C/C++ Kernels... 92
Data Types...92
Interfaces.. 95
Process Execution Modes..99
Loops... 100
Dataflow Optimization...106
Array Configuration... 108
Function Inlining.. 113
Summary... 113

Chapter 8: RTL Kernels.. 115
Requirements of an RTL Kernel..115
RTL Kernel Development Flow..118
RTL Kernel Wizard.. 127
Design Recommendations for RTL Kernels.. 144

Chapter 9: Streaming Data Transfers... 149
Streaming Data Between the Host and Kernel (H2K)..149
Streaming Data Transfers Between Kernels (K2K).. 155
Free-Running Kernel..156

Chapter 10: OpenCL Kernels.. 158

Chapter 11: Best Practices for Acceleration with Vitis..................... 160

Section III: Building and Running the Application.................................. 162

Chapter 12: Setting up the Vitis Environment.......................................164

Chapter 13: Build Targets.. 165
Software Emulation..165
Hardware Emulation..166

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=4

System Hardware Target...166

Chapter 14: Building the Host Program.. 168
Compiling and Linking for x86... 168
Compiling and Linking for Arm.. 169

Chapter 15: Building the Device Binary...171
Compiling Kernels with Vitis Compiler.. 172
Compiling Kernels with Vitis HLS... 173
Packaging RTL Kernels with package_xo...177
Linking the Kernels.. 177
Controlling Report Generation...187

Chapter 16: Packaging the System.. 189
Packaging for Data Center Platforms..189
Packaging for Embedded Platforms..189

Chapter 17: Directory Structure.. 191
Output Directories from the v++ Command...191
Output Directories from the Vitis IDE..192

Chapter 18: Running an Application... 194

Section IV: Profiling, Optimizing, and Debugging the Application 197

Chapter 19: Profiling the Application... 199
Enabling Profiling in Your Application...200
Baselining Functionalities and Performance..201
Guidance... 203
System Estimate Report.. 207
HLS Report.. 212
Profile Summary Report..214
Application Timeline.. 223
Low Overhead Profiling...227
Waveform View and Live Waveform Viewer... 228

Chapter 20: Optimizing the Performance.. 234
Host Optimization.. 234
Kernel Optimization...243

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=5

Topological Optimization.. 278

Chapter 21: Debugging Applications and Kernels...............................283
Debugging Flows... 283
Debugging in Software Emulation...284
Debugging in Hardware Emulation... 291
Debugging During Hardware Execution...295
Debugging on Embedded Processor Platforms...318
Example of Command Line Debugging.. 323

Section V: Vitis Environment Reference Materials.................................. 326

Chapter 22: Vitis Compiler Command.. 329
Vitis Compiler General Options.. 329
--advanced Options..346
--clock Options..349
--connectivity Options..353
--hls Options... 356
--linkhook Options... 359
--package Options..360
--vivado Options... 363
Vitis Compiler Configuration File..365
Using the Message Rule File... 367

Chapter 23: emconfigutil Utility.. 369

Chapter 24: kernelinfo Utility... 371
Kernel Definition.. 372
Arguments.. 372
Ports...373

Chapter 25: launch_emulator Utility...374

Chapter 26: manage_ipcache Utility... 377

Chapter 27: package_xo Command..378

Chapter 28: platforminfo Utility.. 380
Basic Platform Information...381

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=6

Hardware Platform Information.. 382
Interface Information.. 382
Clock Information.. 382
Valid SLRs.. 383
Resource Availability..383
Memory Information... 383
Feature ROM Information...385
Software Platform Information.. 385
Platforminfo for xilinx_zcu104_base_202010_1...386

Chapter 29: xbutil Utility..388
clock... 389
dmatest... 390
dump... 392
m2mtest.. 397
mem --read... 398
mem --write.. 400
p2p... 401
program.. 403
query..404
reset... 411
scan (xbutil).. 411
status... 414
top.. 416
validate.. 418
version... 420

Chapter 30: xbmgmt Utility..421
flash... 422
scan (xbmgmt)... 428
version... 429

Chapter 31: xclbinutil Utility..431
xclbin Information..432
Hardware Platform Information.. 432
Clocks...433
Memory Configuration.. 433
Kernel Information.. 434
Tool Generation Information..435

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=7

Chapter 32: xrt.ini File... 437

Chapter 33: HLS Pragmas.. 443

Chapter 34: OpenCL Attributes.. 445
always_inline... 446
opencl_unroll_hint..447
reqd_work_group_size... 448
vec_type_hint.. 450
work_group_size_hint.. 451
xcl_array_partition..452
xcl_array_reshape...455
xcl_dataflow.. 458
xcl_latency... 459
xcl_loop_tripcount.. 460
xcl_max_work_group_size..462
xcl_pipeline_loop.. 463
xcl_pipeline_workitems..464
xcl_reqd_pipe_depth.. 465
xcl_zero_global_work_offset..467

Section VI: Using the Vitis Analyzer... 469

Chapter 35: Working with Reports...472

Chapter 36: Vitis Analyzer GUI and Window Manager......................474
Diff Two Text Files.. 475
Cross-Probing Between Reports.. 476

Chapter 37: Platform and System Diagrams.. 479

Chapter 38: Creating an Archive File...482

Chapter 39: Configuring the Vitis Analyzer...484

Section VII: Using the Vitis IDE... 486

Chapter 40: Vitis Command Options... 487

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=8

Chapter 41: Creating a Vitis IDE Project..488
Launch a Vitis IDE Workspace.. 488
Create an Application Project... 489
Understanding the Vitis IDE... 495
Adding Sources...496
Working in the Project Editor View.. 499
Working in the Assistant View.. 500

Chapter 42: Building the System... 503
Vitis IDE Guidance View...504
Working with Vivado Tools from the Vitis IDE.. 505

Chapter 43: Vitis IDE Debug Flow..507
Using the Standalone Debug Flow...509
vitis -debug Command Line..511

Chapter 44: Configuring the Vitis IDE...515
Vitis Project Settings.. 515
Vitis Build Configuration Settings.. 517
Vitis Run Configuration Settings.. 518
Vitis Binary Container Settings... 521
Vitis Hardware Function Settings... 522
Vitis Toolchain Settings..524

Chapter 45: Project Export and Import..528
Export a Vitis Project..528
Import a Vitis Project... 529

Chapter 46: Getting Started with Examples... 531
Installing Examples and Libraries.. 531
Using Local Copies... 533

Section VIII: Using Vitis Embedded Processor Platforms.................... 535

Chapter 47: Vitis Embedded Platforms.. 536
Introduction.. 536
Platform Types..536
Platform Naming Convention...540

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=9

Embedded Platform Components and Architecture... 540
Installing Embedded Platforms..542

Chapter 48: Using Vitis Embedded Platforms.. 543
Packaging Images..543
Writing Images to the SD Card...545
Configuring the PL Kernel in DFX Platforms and Non-DFX Platforms.........................546
Running an Acceleration Application on the Board...547
Software Package Management in PetaLinux rootfs.. 548

Chapter 49: Creating Embedded Platforms in Vitis............................ 550
Platform Basics...550
Platform Creation Requirements... 551
Creating an Embedded Platform... 551

Section IX: Migrating to a New Target Platform...................................... 560

Chapter 50: Design Migration... 561
Understanding an FPGA Architecture... 562
Understanding Target Platforms... 565

Chapter 51: Migrating Releases...567
Host Code Migration..567
Release Migration.. 568

Chapter 52: Modifying Kernel Placement.. 569
Implications of a New Hardware Platform..570
Determining Where to Place the Kernels..572
Assigning Kernels to SLRs... 573

Chapter 53: Address Timing... 576
Custom Constraints... 576
Timing Closure Considerations.. 576

Section X: Additional Resources and Legal Notices................................ 578
Xilinx Resources...578
Documentation Navigator and Design Hubs.. 578
Please Read: Important Legal Notices... 579

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=10

Section I

Introduction to the Vitis Unified
Software Platform

Revision History

The following table shows the revision history for this section.

Section Revision Summary
08/20/2020 Version 2020.1

Entire section No updates to this section.

06/24/2020 Version 2020.1

Installation Requirements Updated operating system requirements.

06/03/2020 Version 2020.1

General updates Updated figures and tool commands.

Introduction

The Vitis™ unified software platform is a new tool that combines all aspects of Xilinx® software
development into one unified environment.

This section contains the following chapters:

• Vitis 2020.1 Software Platform Release Notes

• Installation

• Introduction to the Vitis Environment for Acceleration

• Methodology for Accelerating Applications with the Vitis Software Platform

Section I: Introduction to the Vitis Unified Software Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=11

Chapter 1

Vitis 2020.1 Software Platform
Release Notes

This section contains information regarding the features and updates of the Vitis software
platform in this release.

What's New
Vitis Unified Software Platform

• 500+ FPGA-accelerated functions spread across 11 open-source Vitis libraries

• New Vitis HLS compiler for custom C/C++ kernel design with familiar programming constructs

• Improved RTL kernel integration within Vitis applications

• Higher-level Xilinx Runtime (XRT) Library APIs for easier communication with deployed
Kernels

• Better visibility into kernel and system performance and actionable insights for improving
performance

• Enhancements for easier custom Vitis target platform creation for embedded platforms

• Open-source Xilinx FPGA Resource Manager (XRM) for server-based computing orchestration

Note: The Vitis Unified Installer installs the Vitis Core Development Kit 2020.1. Vitis libraries, XRT, XRM,
and Vitis target platforms are available as separate downloads. For more information, see https://
www.xilinx.com/vitis.

Vitis Quantitative Finance Library

127 total FPGA-accelerated functions available in v2.0 (2020.1), including:

• 5 new Level-3 (L3) Host-callable APIs with Python bindings (pybind11)

• 11 new Level-2 (L2) Kernels

• 25 new Level-1 (L1) Primitives

Section I: Introduction to the Vitis Unified Software Platform
Chapter 1: Vitis 2020.1 Software Platform Release Notes

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 12Send Feedback

https://www.xilinx.com/vitis
https://www.xilinx.com/vitis
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=12

Vitis BLAS Library

• Level-3 API Enhancements: The following enhancements were made.

• Python Host API added for General Matrix Multiply (GeMM).

• GeMM floating point benchmark results available for Alveo U250 Data Center accelerator
cards.

• New application example added using Python APIs in MLP Keras framework.

• 3x-12x speed-up for four-layer fully connected MLP inference compared to CPU on AWS
C5n.4xLarge node.

• Performance Improvements: The following performance improvements can be observed.
• 3x-4x speed-up for GeMM API compared to 2019.2.
• For matrix size < 1024, 2x-50x speed-up compared to MKL GEMM API for float type.

Vitis Solver Library

• New Level-1 Function: Added sqrt function.

Vitis DSP Library

• New Performance Benchmarks: The following performance benchmarks were added.

• Level-2 Kernels added for benchmarking FFT APIs.

• Enables rapid prototyping and performance evaluations.

• Level-1 Function Examples: New 2D FFT fixed-point and floating-point examples.

Vitis Vision Library

• Letter Box (Level-3): Image scaling algorithm, while preserving aspect ratio.

• ISP Pipeline example design (Vitis_Libraries/vision/L3/examples/):

• Demonstrates end-end streaming camera processing pipeline.

• Uses Vitis vision functions, such as Channel Gain, Demosaic, Auto White Balance, Gamma
Correction, and Bad Pixel Correction.

• Auto white balance algorithm: Enhanced

• Vitis HLS compatible: Easier to design custom kernels.

• The xf::cv::Mat class member data, which was previously a pointer, is now changed to
an hls::stream type.

• The read, write, read_float, and write_float member functions that facilitate the
data access of xf::cv::Mat have been updated accordingly.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 1: Vitis 2020.1 Software Platform Release Notes

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=13

• Enhanced Array2xfMat and xfMat2Array utility functions.

• The L1 host functions targeting HLS flow are updated to have pointers at the interface
instead of xf::cv::Mat, similar to L2 functions. All testbench and config files have been
updated accordingly.

• Library infrastructure enhancements: The following infrastructure enhancements were made.

• L2/L3 Makefiles use smaller images for faster verification using software and hardware
emulation.

• All JSON files have been updated to support automatic creation of projects in the Vitis IDE.

• Makefiles and JSON files are moved out of the build folder in the examples directory with
the host source files.

• Emulation flow for embedded devices has been updated in all the Makefiles to use a Perl-
based script. Added the corresponding script in the ext/make_utility folder.

• The data folders inside individual L1 examples have been removed. All input arguments
are now provided in the top-level data folder in the Makefiles and JSON files.

• 2020.1 code base is not backward-compatible: All functions in the library must be built with
2020.1 Vitis/Vivado® tools only. None of the functions in this release can be used with any of
the previous versions of Vitis or Vivado.

Vitis Database Library

• Compound sort API (compoundSort): Previously three sort algorithm modules were
provided, and this new API combines insertSort and mergeSort to provide a more
scalable solution for on-chip sorting. When working with 32-bit integer keys, URAM resource
on one SLR could support the design to scale to 2M entries.

• Better HBM bandwidth usage in hash-join (hashJoinV3): In the 2019.2 Alveo U280 shell,
ECC was enabled. Therefore, the sub-ECC size write to HBM becomes read-modify-write, and
wastes some bandwidth. The hashJoinV3 primitive in this release has been modified to use
256-bit port to avoid this problem.

Vitis Utility Library

• Read-only cache: This API stores history data recently loaded from DDR/HBM in the on-chip
memory (URAM). It reduces DDR/HBM access when the memory is accessed randomly.

• Better HBM bandwidth usage in hash-join (hashJoinV3): In 2019.2 Alveo U280 Data
Center accelerator cards, ECC has been enabled. Therefore, the sub-ECC size write to HBM
becomes read-modify-write, and wastes some bandwidth. To avoid this problem, the
hashJoinV3 primitive in this release has been modified to use 256-bit port.

• AXI Master Read without e signal: This API provides buffered read from AXI master into
stream, assuming that the receiver of the stream knows the number of elements to process.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 1: Vitis 2020.1 Software Platform Release Notes

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=14

Vitis Graph Library

Performance-optimized functions to accelerate graph analytics. Example use cases include
machine learning, genomics, recommendation systems, search engines, social network analysis,
and traffic-based path planning.

Available as Level-2 Kernel functions.

• Centrality analysis: Page Rank algorithm

• Pathfinding: Single Source Shortest Path algorithm

• Connectivity analysis: Weakly connected components, strongly connected components

• Community Detection: Label propagation and triangle count algorithms

• Search: Breadth First Search algorithm

• Graph Format: Calculate Degree and Format Convert between CSR and CSC

Vitis Data Analytics Library

Offers performance-optimized functions to accelerate data analytics pipelines.

• Classification:
• Decision Tree
• Random Forest
• Logistic Regression
• Linear Support Vector Machine
• Naive Bayes

• Regression:
• Linear Least Square Regression
• LASSO Regression
• Ridge Regression

• Clustering: K-Means

• Optimization Framework:
• Stochastic Gradient Descent
• L-BFGS

• Performance Highlights: Enhancements include:
• Training of Naive Bayes achieves 319X acceleration on Dataset "news20" with U250

against Spark MLLib with Intel® Xeon™ CPU E5-2667.
• Training of Decision Tree classification achieves 23x acceleration on Dataset

"Heterogeneity Activity Recognition" with U250 against Spark MLLib with Intel Xeon CPU
E5-2667.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 1: Vitis 2020.1 Software Platform Release Notes

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=15

• Training of Random Forest classification achieves 15x acceleration on Dataset "HIGGS"
with U250 against Spark MLLib with Intel Xeon CPU E5-2667.

Vitis Compiler and Linker (v++)

• v++ calls Vitis HLS compiler by default: It inherits all enhancements included in Vitis HLS.

• v++ linker enhancements: New linker option to insert FIFOs with user specified depth on
streaming connections. In addition, the v++ linker automatically adds clock domain crossing
(CDC) logic and data width converter (DWC) logic where necessary when connecting
streaming interfaces. This eliminates the requirement of manual instantiation.

• New v++ --package stage: Enables generating and packaging all the components needed
for booting designs on Emulation and Hardware platforms. This step is at the end of compiling
and linking processes to generate the components for booting a design on emulation and
hardware target. For more details, refer to Vitis Accelerated Software Development Flow
Documentation in the Application Acceleration Development flow of the Vitis Unified Software
Platform Documentation (UG1416) to learn about the options and usage.

• Enhancements to RTL Kernel Import: Easily package and reuse RTL IPs within a Vitis
application. All necessary files required by Vitis (kernel.xml) are automatically generated
from the component.xml file. This simplifies the RTL kernel design process and makes it
more error prone.

• EoU and productivity enhancement on v++: This includes improvements on many different
areas, such as better messaging, IP cache sharing, and improved support for Tcl hooks in all
Vivado steps.

• Support user-specified FREQ_HZ with customizable error margin: Specify clock frequencies
with tolerances through v++ linker option and clocking connectivity will be automatically
handled by the tool. This is only for embedded platforms for this release.

Vitis HLS

• New high-level synthesis tool engine and Vitis HLS interface for C-based kernel compilation.

• Vitis HLS brings C++14 support (constexpr, variadic templates, auto for type inference,
initializer separator, string literals and user-defined literals, range based for-loops,
static_assert, and so on).

• Two main behavior presets based on the desired target flow vitis or vivado. This target
flow can be selected in the "Solutions Settings" widget under "Synthesis" or via Tcl with the
new flow_target option for open_solution.

• The Vitis HLS Migration Guide (UG1391) helps transition from Vivado HLS to Vitis HLS for C/C
++ kernel design in the Vitis tool.

• GCC struct layout style for ports compatible with the aligned and packed attributes to
ensure better compatibility with host software applications.

• New disaggregate pragma to force struct members into individual elements.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 1: Vitis 2020.1 Software Platform Release Notes

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 16Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=latest;d=kme1569523964461.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=latest;d=kme1569523964461.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1391-vitis-hls-migration-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=16

• New bind_op and bind_storage pragmas to constrain operators and RAM elements.

• Implicit interface synthesis for kernels ports: specifying interface pragmas is now optional,
resulting in less verbose kernel code.

• Interface pragmas ap_memory and bram offer a new storage_type option to customize
the external memory type (for example, to only use one port rather than the default of both).

• Simplified hierarchical summary report in the IDE to easily check function hierarchy, timing,
latency, throughput, and usage, and to confirm that pipeline and/or dataflow pragmas were
applied.

• New automatic port resizing option for C/C++ kernels. This helps kernel ports better match
the platform interface width for higher throughput.

• Code examples available as part of the Vitis acceleration C++ kernel examples on GitHub.
Vitis HLS comes with its own new repository of examples also on GitHub.

• Unlabeled loops get assigned a machine-generated label to more easily differentiate between
all the different loops in the design.

• Improved dataflow graphical viewer.

• Redesigned C/RTL Co-simulation widget now takes Vivado XSIM as the default simulator and
introduces a new channel profiling option.

• Array of std::complex types can now be throughput-optimized for dataflow via the
no_ctor attribute to inhibit the performance limiting initialization.

• The RTL black-box flow offers a wizard to help create the JSON configuration file.

• Stall randomization in co-simulation to validate the kernel in the presence of stalls at its
interfaces.

• Function graph after C simulation helps visualize the code structure.

• Report shows the loop and function latency expressed as actual time (clock cycles of latency *
period).

IDE

• Vitis Library Integration: Vitis IDE can download Vitis accelerated libraries, create library
example projects, and add libraries to include paths to acceleration applications.

• Enhancements to New Project Wizard: Improved the New Project Wizard to provide a more
intuitive flow.

• Wizard provides error or warning messages to the user as they are reported.

• The Template Selection page displays many application templates on a single page.

• Support non-project mode debugging: Applications generated by command line mode can use
the Vitis IDE to run debugging with one command.

• 32-bit App Compilation: Compiling 32-bit application for Arm® Cortex-A53 is back.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 1: Vitis 2020.1 Software Platform Release Notes

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=17

• New project types and project relationship: Enhanced options.

Emulation

• Improved debugging during emulation: Enhancements include:

• Centralized logging of all the build-time simulation failures into v++ logs.

• Uses XSIM as a default simulator.

• More built-in checks and DRCs.

Profiling, Analysis and Visualization

• Enhanced profile summary report and design guidance report: Profile summary report is more
structured and easy to navigate. Design guidance report adds new rules and is more
structured with better messaging.

• New device power section: New section of the Profile Summary report shows board power
information.

• Better visibility into system performance: You can now do the following for better system
performance visibility:

• Overlay performance data on the System Diagram for hardware emulation and hardware
runs.

• View Compute Unit (CU) statistics, including number of calls, CU utilization(%), total
time(ms), and average time(ms)

• View read/write data transfer rates annotated on CU ports.

• Cross-probing between reports: In the run summary, the guidance report has two new types
of links:

• Design object links (such as krnl_vadd): Click to select the object in the profile summary
report and system diagram

• Value links (such as 6.789 KB): Click to open the profile summary report in context of the
relevant section of the report

• Profile summary archives: Save profile summary archives across multiple builds and runs to
assess iterative performance improvements and share results between teams for analysis.

• Compare reports between application builds and runs: Easily assess performance
improvement as you iterate and implement optimizations by comparing reports between
multiple application builds and runs. Supported reports include kernel estimate, system
estimate, timing summary, and build logs.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 1: Vitis 2020.1 Software Platform Release Notes

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=18

• Improved and actionable guidance: New guidance messages added for both Vitis and Vitis
HLS. Guidance messages include web links to relevant resolution / troubleshooting
documentation. Improved feedback categories (Throughput, Latency, Interface, Memory,
Kernel).

• Cross-probing from guidance to system diagram: Enhancement

Debug

• Continuous Timeline Trace Reads: The following functionality was added.

• Provides improved accuracy by reading timeline trace data at regular user-specified
intervals.

• Provides access to device-related profile information even on application hang/crash for
better debug.

• Supports continuously offloading trace data while application is running.

• Supports both FIFO offload and DDR/HBM offload.

• Faster Execution with Low-overhead Timeline Trace: This feature includes the following:

• Low-overhead tracing generates minimalistic trace necessary for debug and enables faster
application runs.

• Produces a reduced timeline trace report with only host side data, therefore eliminating the
overhead of device side profiling, which significantly reduces the impact on performance.

• Is enabled or disabled through the xrt.ini file and does not require recompiling the
design.

• TLM Transaction View in Live Waveform Viewer: Adds ability to enable the display of
transaction-level details on AXI-MM interfaces in the live waveform viewer in the Vitis
hardware emulation flow.

XRT

For information about Xilinx Runtime for this release, refer to the XRT Release Notes (UG1451).

XRM

Xilinx FPGA Resource Management (XRM) offers server-based compute orchestration
capabilities based on the XRT API.

XRM is a set of APIs to manage compute units (subsets of xclbins) on a local server. Multiple
applications can run on a pool of cards attached to a server. XRM then assigns the compute units
based on demand and availability.

XRM is open source and available at https://github.com/Xilinx/XRM.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 1: Vitis 2020.1 Software Platform Release Notes

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 19Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1451-xrt-release-notes.pdf
https://github.com/Xilinx/XRM
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=19

Embedded Platforms

This release includes the following updates for embedded platforms:

• Intuitive Platform Naming Convention:

<Vendor>_<Board>_<Feature>_<Supported Vitis Tool Version>_<Release Version>.

Example: xilinx_zcu102_base_dfx_202010_1.

• Pre-compiled common Linux components are provided: Easier out-of-box flow. No need to
install Vitis and PetaLinux in evaluation flow.

• Software package manager and package feed are provided: You can now install common
software packages on the fly. No need to compile from PetaLinux.

• Use Ext4 as default rootfs: rootfs will not occupy DDR memory space like initramfs. Changes
to the file system will be retained after reboot.

• No need for post link script: v++ can link interrupt signals automatically and XRT can
recognize these signals and control them in software.

• Easier Vitis Target Platform Export : New wizard to package and export Xilinx Shell Archive
(XSA) as Vitis Target Platform.

Supported Platforms
Data Center Accelerator Cards

Access the latest Vitis Target Platforms for Alveo Accelerator cards at www.xilinx.com/alveo.

Refer to Alveo Data Center Accelerator Card Platforms User Guide (UG1120) for specifications of
each accelerator card and available target platforms. The Getting Started section for each
accelerator card has information for deploying your applications on that card.

Changed Behavior
The following table specifies differences between this release and prior releases that
impact behavior or flow when migrating.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 1: Vitis 2020.1 Software Platform Release Notes

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 20Send Feedback

https://www.xilinx.com/alveo
https://www.xilinx.com/cgi-bin/docs/bkdoc?k=accelerator-cards;d=ug1120-alveo-platforms.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=20

Table 1: Changed Behavior Summary

Area Behavior

Vitis build process

Instead of Vivado® HLS, v++ now invokes Vitis HLS.
For more information about the tools and their differences, refer to the Vitis HLS Migration Guide
(UG1391).

The v++ --package process is a new step in the Vitis compiler build process for embedded
processor platform users. The --package step follows the v++ --link step to complete the
build.

Design analysis The debug_mode option replaces the launch_waveform option, which is now deprecated.

Vitis HLS The hls_video.h library for video utilities and functions has been deprecated and replaced by
the Vitis vision library. More details on this GitHub video library migration guide.

Xilinx Runtime (XRT)

The deprecated utilties xclbincat and xclbinsplit are removed.
To work with xclbin files, use xclbinutil.

The following APIs are deprecated:

• xclResetDevice()

• xclUpgradeFirmware(), xclUpgradeFirmware2(), and xclUpgradeFirmwareXSpi()

• xclBootFPGA(), xclRemoveAndScanFPGA() and xclRegisterInterruptNotify()

• xclLockDevice() and xclUnlockDevice()

In a future release, they will be removed.
For more information, see https://github.com/Xilinx/XRT/blob/master/CHANGELOG.rst.

To be consistent with clCreateBuffer flags, XCL_STREAM_WRITE_ONLY and
XCL_STREAM_READ_ONLY are introduced.
The original flags (CL_STREAM_READ_ONLY and CL_STREAM_WRITE_ONLY) are being deprecated.

Known Issues
Known Issues for the Vitis software platform are available in AR#73646.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 1: Vitis 2020.1 Software Platform Release Notes

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 21Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1391-vitis-hls-migration-guide.pdf
https://github.com/Xilinx/XRT/blob/master/CHANGELOG.rst
https://www.xilinx.com/support/answers/73646.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=21

Chapter 2

Installation

Installation Requirements
The Vitis software platform consists of an integrated development environment (IDE) for
interactive project development, and command-line tools for scripted or manual application
development. The Vitis software platform also includes the Vivado® Design Suite for
implementing the kernel on the target device, and for developing custom hardware platforms.

Note: Windows OS support is limited to the Vitis embedded software development flow. The acceleration
features in the Vitis software platform are not supported.

Some requirements listed here are only required for software acceleration features, but not for
embedded software development features. Xilinx recommends installing all the required
packages to have the best experience with the Vitis software platform.

To install and run on a computer, your system must meet the following minimum requirements.

Table 2: Application Acceleration Development Flow Minimum System Requirements

Component

Requirement
Development

(Build Machine OS)
Deployment (Host OS)

Enabled via XRT

Operating System Linux, 64-bit:
• RHEL/CentOS 7.4, 7.5, and 7.6
• Ubuntu 16.04.5 LTS, 16.04.6 LTS,

18.04.1 LTS, 18.04.2 LTS
• Amazon Linux 2 AL2 LTS

For on-premise acceleration (Alveo
Data Center accelerator cards):

• RHEL/CentOS 7.4. 7.5, 7.6

• Ubuntu 16.04.5 LTS,16.04.6 LTS,
18.04.1 LTS, 18.04.2 LTS

• Amazon Linux 2 AL2 LTS

For edge acceleration (embedded
platforms):

• PetaLinux 2020.1

System Memory For Alveo cards: 64 GB (80 GB is recommended)
For embedded: 32 GB

Internet Connection Required for downloading drivers and utilities.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 2: Installation

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=22

Table 2: Application Acceleration Development Flow Minimum System Requirements
(cont'd)

Component

Requirement
Development

(Build Machine OS)
Deployment (Host OS)

Enabled via XRT

Hard disk space 100 GB

Install Required RHEL/CentOS Packages
Before installing the Vitis software platform on CentOS or RedHat, you must install the Extra
Packages for Enterprise Linux (EPEL), and ensure you have the proper kernel-headers and kernel-
devel packages installed. The initial setup commands depend on your operating system. For more
information, see https://fedoraproject.org/wiki/EPEL.

1. Install EPEL.

On RedHat:

To enable an additional repository on your system and install the packages, open a terminal
window, and enter the following command:

$ sudo yum-config-manager --enable rhel-7-server-optional-rpms

$ sudo yum install -y https://dl.fedoraproject.org/pub/epel/
epel-release-latest-7.noarch.rpm

On CentOS:

Open a terminal window, and enter the following command:

sudo yum install epel-release

2. To install kernel headers and kernel development packages, run the following commands:

$ sudo yum install kernel-headers-`uname -r`
$ sudo yum install kernel-devel-`uname -r`

Note: Ensure that uname is surrounded by backticks (`) and not single quotes (').

3. To install additional packages required for emulation, run the following commands.

sudo yum install gcc
sudo yum install gcc-c++
sudo yum install python2
ln -s /usr/bin/python2 /usr/bin/python

4. Cold reboot your system.

TIP: To verify that you have installed all required packages on your machine, use this script: https://
github.com/Xilinx/XRT/blob/master/src/runtime_src/tools/scripts/xrtdeps.sh.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 2: Installation

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 23Send Feedback

https://fedoraproject.org/wiki/EPEL
https://github.com/Xilinx/XRT/blob/master/src/runtime_src/tools/scripts/xrtdeps.sh
https://github.com/Xilinx/XRT/blob/master/src/runtime_src/tools/scripts/xrtdeps.sh
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=23

OpenCL Installable Client Driver Loader
A system can have multiple OpenCL™ platforms, each with its own driver and OpenCL version.
The Vitis™ environment supports the OpenCL Installable Client Driver (ICD) extension
(cl_khr_icd). This extension allows multiple implementations of OpenCL to co-exist on the
same system. The ICD Loader acts as a supervisor for all installed platforms, and provides a
standard handler for all API calls.

Applications can choose an OpenCL platform from the list of installed platforms. Based on the
platform ID specified by the application, the ICD dispatches the OpenCL host calls to the right
runtime.

Xilinx does not provide the OpenCL ICD library, so the following should be used to install the
library on your preferred system.

Ubuntu

On Ubuntu the ICD library is packaged with the distribution. Install the following packages:

• ocl-icd-libopencl1

• opencl-headers

• ocl-icd-opencl-dev

Linux

For RHEL/CentOS 7.X use EPEL 7, install the following packages:

• ocl-icd

• ocl-icd-devel

• opencl-headers

Install Required Ubuntu Packages
Install the following packages before you install the Vitis Software Platform.

1. Install the packages with the following command.

sudo add-apt-repository ppa:xorg-edgers/ppa
sudo apt-get update
sudo apt-get install libgl1-mesa-glx
sudo apt-get install libgl1-mesa-dri
sudo apt-get install libgl1-mesa-dev
sudo add-apt-repository --remove ppa:xorg-edgers/ppa
sudo apt install net-tools

Section I: Introduction to the Vitis Unified Software Platform
Chapter 2: Installation

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=24

sudo apt-get install -y unzip
sudo apt install gcc
sudo apt install g++
sudo apt install python
ln -s /usr/bin/python2 /usr/bin/python

2. Cold reboot your system.

Vitis Software Platform Installation
For hardware-accelerated application development, do the following: install the Vitis™ tools,
Xilinx Runtime (XRT), and applicable platform files, as outlined below:

1. Install the Vitis Software Platform.

2. Follow the instructions in Installing Xilinx Runtime.

3. Install the data center platform, as described in Installing Data Center Platforms

4. Follow the instructions in Setting Up the Environment to Run the Vitis Software Platform.

Note: To install and use XRT on CentOS/RedHat, ensure that you have already installed all required
packages and recommended libraries, as described in Install Required RHEL/CentOS Packages.

Note: To install and use XRT on Ubuntu, ensure that you have installed the required Ubuntu packages, as
described in Install Required Ubuntu Packages.

Install the Vitis Software Platform
Ensure your system meets all requirements described in Installation Requirements.

TIP: To reduce installation time, disable anti-virus software and close all open programs that are not
needed.

1. Go to the Xilinx Downloads Website.

2. Download the installer for your operating system.

3. Run the installer, which opens the Xilinx Unified 2020.1 Installer.

4. Click Next.

5. Enter your Xilinx user account credentials, and then select Download and Install Now.

6. Click Next.

7. Accept the terms and conditions by clicking each I Agree check box.

8. Click Next.

9. Select Vitis, and then click Next.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 2: Installation

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 25Send Feedback

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=25

10.Optionally, customize your installation by selecting design tools and devices, and then click
Next.

IMPORTANT! Do not deselect the following option. It is required for installation.

• Devices → Install devices for Alveo and Xilinx Edge acceleration platforms

Note: Both the Vitis tools and Vivado Design Suite are installed. You do not need to separately install
Vivado tools. You can also install System Generator and Model Composer if needed.

11. Select the installation directory, optional shortcut and file association options, and then click
Next.

12. Review the installation summary, which shows the options and locations you have selected.

13. To proceed with the installation of the Vitis software platform, click Install.

After a successful installation, a confirmation message is displayed.

Installing Xilinx Runtime
Xilinx Runtime (XRT) is implemented as a combination of user-space and kernel driver
components. XRT supports Alveo PCIe-based cards, as well as Zynq UltraScale+ MPSoC-based
embedded system platforms, and provides a software interface to Xilinx programmable logic
devices.

You only need to install XRT once, regardless of how many platforms you may be installing.

IMPORTANT! XRT installation uses standard Linux RPM and Linux DEB distribution files, and root access
is required for all software and firmware installations.

<rpm-dir> or <deb-dir> is the directory where you downloaded the packages to install.

To download and install the XRT package for your operating system, do the following.

1. Go to https://www.xilinx.com/xrt to download the RPM file.

2. From the Getting Started tab, select your target platform and download the corresponding
XRT that is compatible for your platform.

CentOS/RedHat

To install the package, enter the following command.

sudo yum install <rpm-dir>/<xrt_filename>.rpm

Ubuntu

To install the package, enter the following command.

sudo apt install <deb-dir>/<xrt_filename_OS>.deb

Section I: Introduction to the Vitis Unified Software Platform
Chapter 2: Installation

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 26Send Feedback

https://www.xilinx.com/xrt
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=26

Note: <OS> represents the Ubuntu operating system version (16.04 or 18.04) you are using.

IMPORTANT! When installing XRT on Ubuntu, if the 2015 version of pyopencl  is installed on your
system, you must uninstall it. The XRT installation will install the 2019 version of pyopencl  and will
return an error if the 2015 version is installed. For more information, see AR#73055.

Installing Data Center Platforms
For data center applications, you can configure your system for developing and debugging
applications using the Vitis development environment, as well as running them on hardware. This
does not require the actual accelerator card, but does require the installation of XRT, the
deployment platform, and the development platform for each accelerator card you plan to
develop applications for.

TIP: While the system does not require an accelerator card to develop applications, it is required to run and
debug the application on hardware.

The platform includes information necessary for compiling and debugging new acceleration
applications. It is a required part of the Vitis environment to support a specific accelerator card in
the tool. Each accelerator card requires a platform that must be installed to support that platform
in the Vitis environment.

Note: You must resolve any code host library dependencies.

Install Platforms on CentOS/RedHat

If you are installing these packages for use with the Vitis development environment and do not
have an installed card, then you can ignore any message asking you to flash the accelerator card.
However, if you are installing these packages for use with an installed accelerator card, you must
follow the instructions in Getting Started with Alveo Data Center Accelerator Cards (UG1301).

IMPORTANT! Before installing platforms, you must have Xilinx Runtime installed, as described in
Installing Xilinx Runtime.

1. Download the deployment and development target platform packages for the Alveo Data
Center Accelerator card you are using:

• U50: Deployment Target Platform and Development Target Platform

• U200: Deployment Target Platform and Development Target Platform

• U250: Deployment Target Platform and Development Target Platform

• U280: Deployment Target Platform and Development Target Platform

2. To install the packages, enter the following command.

sudo yum install <rpm-dir>/<deployment_shell_filename>.rpm
sudo yum install <rpm-dir>/<development_shell_filename>.rpm

Section I: Introduction to the Vitis Unified Software Platform
Chapter 2: Installation

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 27Send Feedback

https://www.xilinx.com/support/answers/73055.html
https://www.xilinx.com/cgi-bin/docs/bkdoc?v=latest;k=accelerator-cards;d=ug1301-getting-started-guide-alveo-accelerator-cards.pdf
https://www.xilinx.com/bin/public/openDownload?filename=xilinx-u50-xdma-201920.1-2699728.x86_64.rpm
https://www.xilinx.com/member/forms/download/eula-xef.html?filename=xilinx-u50-xdma-dev-201920.1-2699728.x86_64.rpm
https://www.xilinx.com/bin/public/openDownload?filename=xilinx-u200-xdma-201830.2-2580015.x86_64.rpm
https://www.xilinx.com/member/forms/download/eula-xef.html?filename=xilinx-u200-xdma-dev-201830.2-2580015.x86_64.rpm
https://www.xilinx.com/bin/public/openDownload?filename=xilinx-u250-xdma-201830.2-2580015.x86_64.rpm
https://www.xilinx.com/member/forms/download/eula-xef.html?filename=xilinx-u250-xdma-dev-201830.2-2580015.x86_64.rpm
https://www.xilinx.com/bin/public/openDownload?filename=xilinx-u280-xdma-201920.1-2699728.x86_64.rpm
https://www.xilinx.com/member/forms/download/eula-xef.html?filename=xilinx-u280-xdma-dev-201920.1-2699728.x86_64.rpm
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=27

Note: <rpm-dir> is the directory where you downloaded the packages to install.

Install Platforms on Ubuntu

If you are installing these packages for use with the Vitis development environment and do not
have an installed card, then you can ignore any message asking you to flash the accelerator card.
However, if you are installing these packages for use with an installed accelerator card, you must
follow the instructions in Getting Started with Alveo Data Center Accelerator Cards (UG1301).

IMPORTANT! Before installing platforms, you must have Xilinx Runtime installed, as described in
Installing Xilinx Runtime.

1. Download the deployment and development target platform packages for the Alveo Data
Center Accelerator card you are using from the card product website.

• U50: https://www.xilinx.com/products/boards-and-kits/alveo/u50.html#gettingStarted

• U200: https://www.xilinx.com/products/boards-and-kits/alveo/u200.html#gettingStarted

• U250: https://www.xilinx.com/products/boards-and-kits/alveo/u250.html#gettingStarted

• U280: https://www.xilinx.com/products/boards-and-kits/alveo/u280.html#gettingStarted

2. To install the packages, enter the following command.

sudo apt install <deb-dir>/<deployment_shell_filename_OS>.deb
sudo apt install <deb-dir>/<development_shell_filename_OS>.deb
sudo add-apt-repository ppa:xorg-edgers/ppa
sudo apt-get update
sudo apt-get install libgl1-mesa-glx
sudo apt-get install libgl1-mesa-dri
sudo apt-get install libgl1-mesa-dev
sudo add-apt-repository --remove ppa:xorg-edgers/ppa

Note: <deb-dir> is the directory where you downloaded the packages to install. <OS> represents the
Ubuntu operating system version (16.04 or 18.04) you are using.

Setting Up the Environment to Run the Vitis
Software Platform
To configure the environment to run the Vitis software platform, run the following scripts, which
set up the environment to run in a specific command shell.

 #setup XILINX_VITIS and XILINX_VIVADO variables
 source <Vitis_install_path>/Vitis/2020.1/settings64.sh
 #setup XILINX_XRT
 source /opt/xilinx/xrt/setup.sh

TIP: .csh  scripts are also provided.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 2: Installation

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 28Send Feedback

https://www.xilinx.com/cgi-bin/docs/bkdoc?v=latest;k=accelerator-cards;d=ug1301-getting-started-guide-alveo-accelerator-cards.pdf
https://www.xilinx.com/products/boards-and-kits/alveo/u50.html#gettingStarted
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html#gettingStarted
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html#gettingStarted
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html#gettingStarted
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=28

To specify the location of any platforms you have installed as directed in Installing Data Center
Platforms, set the following environment variable:

export PLATFORM_REPO_PATHS=<path to platforms>

Section I: Introduction to the Vitis Unified Software Platform
Chapter 2: Installation

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=29

Chapter 3

Introduction to the Vitis
Environment for Acceleration

Accelerated Flow Application Development
Using the Vitis Software Platform

The Vitis™ unified software platform is a new tool that combines all aspects of Xilinx® software
development into one unified environment. The Vitis software platform supports both the Vitis
embedded software development flow, for Xilinx Software Development Kit (SDK) users looking
to move into the next generation technology, and the Vitis application acceleration development
flow, for software developers looking to use the latest in Xilinx FPGA-based software
acceleration. This content is primarily concerned with the application acceleration flow, and use
of the Vitis core development kit and Xilinx Runtime (XRT).

The Vitis application acceleration development flow provides a framework for developing and
delivering FPGA accelerated applications using standard programming languages for both
software and hardware components. The software component, or host program, is developed
using C/C++ to run on x86 or embedded processors, with OpenCL™ API calls to manage runtime
interactions with the accelerator. The hardware component, or kernel, can be developed using
C/C++, OpenCL C, or RTL. The Vitis software platform accommodates various methodologies,
letting you start by developing either the application or the kernel.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 3: Introduction to the Vitis Environment for Acceleration

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=30

Figure 1: Vitis Unified Software Platform

Vitis drivers & runtime

Vitis target platform

Video
Transcoding

compilers analyzers debuggers

OpenCV
Library

BLAS
Library

Fintech
Library

Vitis
accelerated

libraries

Vitis core
development

kit

XRT

AI /ML

X23292-092619

As shown in the figure above, the Vitis unified software platform consists of the following
features and elements:

• Vitis technology targets acceleration hardware platforms, such as the Alveo™ Data Center
accelerator cards, or Zynq® UltraScale+™ MPSoC and Zynq®-7000 SoC based embedded
processor platforms.

• XRT provides an API and drivers for your host program to connect with the target platform,
and handles transactions between your host program and accelerated kernels.

• Vitis core development kit provides the software development tool stack, such as compilers
and cross-compilers, to build your host program and kernel code, analyzers to let you profile
and analyze the performance of your application, and debuggers to help you locate and fix any
problems in your application.

• Vitis accelerated libraries provide performance-optimized FPGA acceleration with minimal
code changes, and without the need to reimplement your algorithms to harness the benefits
of Xilinx adaptive computing. Vitis accelerated libraries are available for common functions of
math, statistics, linear algebra and DSP, and also for domain specific applications, like vision
and image processing, quantitative finance, database, data analytics, and data compression.
For more information on Vitis accelerated libraries, refer to https://xilinx.github.io/
Vitis_Libraries/.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 3: Introduction to the Vitis Environment for Acceleration

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 31Send Feedback

https://xilinx.github.io/Vitis_Libraries/
https://xilinx.github.io/Vitis_Libraries/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=31

FPGA Acceleration
Xilinx FPGAs offer many advantages over traditional CPU/GPU acceleration, including a custom
architecture capable of implementing any function that can run on a processor, resulting in better
performance at lower power dissipation. When compared with processor architectures, the
structures that comprise the programmable logic (PL) fabric in a Xilinx device enable a high
degree of parallelism in application execution.

To realize the advantages of software acceleration on a Xilinx device, you should look to
accelerate large compute-intensive portions of your application in hardware. Implementing these
functions in custom hardware gives you an ideal balance between performance and power.

For more information on how to architect an application for optimal performance and other
recommended design techniques, review the Methodology for Accelerating Applications with the
Vitis Software Platform.

Execution Model
In the Vitis core development kit, an application program is split between a host application and
hardware accelerated kernels with a communication channel between them. The host program,
written in C/C++ and using API abstractions like OpenCL, runs on a host processor (such as an
x86 server or an Arm processor for embedded platforms), while hardware accelerated kernels run
within the programmable logic (PL) region of a Xilinx device.

The API calls, managed by XRT, are used to process transactions between the host program and
the hardware accelerators. Communication between the host and the kernel, including control
and data transfers, occurs across the PCIe® bus or an AXI bus for embedded platforms. While
control information is transferred between specific memory locations in the hardware, global
memory is used to transfer data between the host program and the kernels. Global memory is
accessible by both the host processor and hardware accelerators, while host memory is only
accessible by the host application.

For instance, in a typical application, the host first transfers data to be operated on by the kernel
from host memory into global memory. The kernel subsequently operates on the data, storing
results back to the global memory. Upon kernel completion, the host transfers the results back
into the host memory. Data transfers between the host and global memory introduce latency,
which can be costly to the overall application. To achieve acceleration in a real system, the
benefits achieved by the hardware acceleration kernels must outweigh the added latency of the
data transfers.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 3: Introduction to the Vitis Environment for Acceleration

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=32

Figure 2: Architecture of a Vitis Core Development Kit Application

Custom Application

XRT/OpenCL API

XRT

Drivers

Custom Kernels

AXI Interfaces

Global Memory

DMA

Host Processor Programmable Logic

X21835-102219

The target platform contains the FPGA accelerated kernels, global memory, and the direct
memory access (DMA) for memory transfers. Kernels can have one or more global memory
interfaces and are programmable. The Vitis core development kit execution model can be broken
down into the following steps:

1. The host program writes the data needed by a kernel into the global memory of the attached
device through the PCIe interface on an Alveo Data Center accelerator card, or through the
AXI bus on an embedded platform.

2. The host program sets up the kernel with its input parameters.

3. The host program triggers the execution of the kernel function on the FPGA.

4. The kernel performs the required computation while reading data from global memory, as
necessary.

5. The kernel writes data back to global memory and notifies the host that it has completed its
task.

6. The host program reads data back from global memory into the host memory and continues
processing as needed.

The FPGA can accommodate multiple kernel instances on the accelerator, both different types of
kernels, and multiple instances of the same kernel. XRT transparently orchestrates the
interactions between the host program and kernels in the accelerator. XRT architecture
documentation is available at https://xilinx.github.io/XRT/.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 3: Introduction to the Vitis Environment for Acceleration

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 33Send Feedback

https://xilinx.github.io/XRT/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=33

Build Process
TIP: For a brief tutorial on the actual build process, review the Essential Concepts for Building and Running
an Accelerated Application tutorial on the Xilinx GitHub repository.

The Vitis core development kit offers all of the features of a standard software development
environment:

• Compiler or cross-compiler for host applications running on x86 or Arm® processors.

• Cross-compilers for building the FPGA binary.

• Debugging environment to help identify and resolve issues in the code.

• Performance profilers to identify bottlenecks and help you optimize the application.

The build process follows a standard compilation and linking process for both the host program
and the kernel code. As shown in the following figure, the host program is built using the GNU C
++ compiler (g++) or the GNU C++ Arm cross-compiler for MPSoC-based devices. The FPGA
binary is built using the Vitis compiler.

Figure 3: Software/Hardware Build Process

Host
Application
Executable

FPGA
Binary

(.xclbin)

Link

Compile

Host
Application

Link

Compile

FPGA
Kernels

Software
 Build Steps

FPGA
Build Steps

Build Target
Selection

RTL, C/C++ or
OpenCL C

C/C++ with
OpenCL API

Source Code

X21399-102819

Section I: Introduction to the Vitis Unified Software Platform
Chapter 3: Introduction to the Vitis Environment for Acceleration

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 34Send Feedback

https://github.com/Xilinx/Vitis-Tutorials/tree/master/docs/Pathway3
https://github.com/Xilinx/Vitis-Tutorials/tree/master/docs/Pathway3
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=34

Host Program Build Process
The main application is compiled and linked with the g++ compiler, using the following two step
process:

1. Compile any required code into object files (.o).

2. Link the object files (.o) with the XRT shared library to create the executable.

For details on this topic, refer to Building the Host Program.

FPGA Binary Build Process
Figure 4: XCLBIN Build Process

OpenCL

v++ -c

.xo

C/C++

v++ -c

.xo

RTL

package_xo

.xo

C/C++

Vitis HLS

.xo

v++ --link
Target

Platform

.xclbin

X21155-052420

Kernels can be described in C/C++, or OpenCL C code, or can be created from packaged RTL
designs. As shown in the figure above, each hardware kernel is independently compiled to a
Xilinx object (.xo) file using the Vitis compiler (v++) command, the Vitis HLS tool, or the
package_xo command for RTL kernels.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 3: Introduction to the Vitis Environment for Acceleration

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=35

Xilinx object (.xo) files are linked with the target hardware platform by the v++ --link
command to create an FPGA binary file (.xclbin) that is loaded into the Xilinx device on the
target platform. For Alveo Data Center accelerator cards, the .xclbin file is the required build
object for booting and running the system.

For embedded processor platforms an additional step is required to build the system. The Vitis
compiler package process (v++ --package) gathers the necessary elements to build a boot
image for running emulation and debug, or for booting and running on the target hardware, as
shown below.

Figure 5: Embedded Platform Package Process

Target
Platform

.xclbin

v++ --package

Boot
Files

RootFS

Image

ps_app.elf

X21155-052420

The key to building the FPGA binary is to determine the build target you are producing. For more
information, refer to Build Targets.

For a detailed explanation of the build process, refer to Building the Device Binary.

Build Targets

The Vitis compiler build process generates the host program executable and the FPGA binary
(.xclbin). The nature of the FPGA binary is determined by the build target.

• When the build target is software or hardware emulation, the Vitis compiler generates
simulation models of the kernels in the FPGA binary. These emulation targets let you build,
run, and iterate the design over relatively quick cycles; debugging the application and
evaluating performance.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 3: Introduction to the Vitis Environment for Acceleration

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=36

• When the build target is the hardware system, Vitis compiler generates the .xclbin for the
hardware accelerator, using the Vivado Design Suite to run synthesis and implementation. It
uses these tools with predefined settings proven to provide good quality of results. Using the
Vitis core development kit does not require knowledge of these tools; however, hardware-
savvy developers can fully leverage these tools and use all the available features to implement
kernels.

The Vitis compiler provides three different build targets, two emulation targets used for debug
and validation purposes, and the default hardware target used to generate the actual FPGA
binary:

• Software Emulation (sw_emu): Both the host application code and the kernel code are
compiled to run on the host processor. This allows iterative algorithm refinement through fast
build-and-run loops. This target is useful for identifying syntax errors, performing source-level
debugging of the kernel code running together with application, and verifying the behavior of
the system.

• Hardware Emulation (hw_emu): The kernel code is compiled into a hardware model (RTL),
which is run in a dedicated simulator. This build-and-run loop takes longer but provides a
detailed, cycle-accurate view of kernel activity. This target is useful for testing the
functionality of the logic that will go in the FPGA and getting initial performance estimates.

• Hardware (hw): The kernel code is compiled into a hardware model (RTL) and then
implemented on the FPGA, resulting in a binary that will run on the actual FPGA.

Tutorials and Examples
To help you quickly get started with the Vitis core development kit, you can find tutorials,
example applications, and hardware kernels in the following repositories on http://github.com/
Xilinx.

• Vitis Application Acceleration Development Flow Tutorials: Provides a number of tutorials
that can be worked through to teach specific concepts regarding the tool flow and application
development.

The Getting Started pathway tutorials are an excellent place to start as a new user.

• Vitis Examples: Hosts many examples to demonstrate good design practices, coding
guidelines, design pattern for common applications, and most importantly, optimization
techniques to maximize application performance. The on-boarding examples are divided into
several main categories. Each category has various key concepts illustrated by individual
examples in both OpenCL™ C and C/C++ frameworks, when applicable. All examples include a
Makefile to enable building for software emulation, hardware emulation, and running on
hardware, and a README.md file with a detailed explanation of the example.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 3: Introduction to the Vitis Environment for Acceleration

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 37Send Feedback

http://github.com/Xilinx
http://github.com/Xilinx
https://github.com/Xilinx/Vitis-Tutorials
https://github.com/Xilinx/Vitis-Tutorials/tree/master/docs/vitis-getting-started
https://github.com/Xilinx/Vitis_Accel_Examples
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=37

Now that you have an idea of the elements of the Vitis core development kit and how to write
and build an application for acceleration, review the best approach for your design problem.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 3: Introduction to the Vitis Environment for Acceleration

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=38

Chapter 4

Methodology for Accelerating
Applications with the Vitis Software
Platform

Introduction
This content focuses on Data Center applications and PCIe®-based acceleration cards, but the
concepts developed here are also generally applicable to embedded applications.

Acceleration: An Industrial Analogy
There are distinct differences between CPUs, GPUs, and programmable devices. Understanding
these differences is key to efficiently developing applications for each kind of device and
achieving optimal acceleration.

Both CPUs and GPUs have pre-defined architectures, with a fixed number of cores, a fixed-
instruction set, and a rigid memory architecture. GPUs scale performance through the number of
cores and by employing SIMD/SIMT parallelism. In contrast, programmable devices are fully
customizable architectures. The developer creates compute units that are optimized for
application needs. Performance is achieved by creating deeply pipelined datapaths, rather than
multiplying the number of compute units.

Think of a CPU as a group of workshops, with each one employing a very skilled worker. These
workers have access to general purpose tools that let them build almost anything. Each worker
crafts one item at a time, successively using different tools to turn raw material into finished
goods. This sequential transformation process can require many steps, depending on the nature
of the task. The workshops are independent, and the workers can all be doing different tasks
without distractions or coordination problems.

A GPU also has workshops and workers, but it has considerably more of them, and the workers
are much more specialized. They have access to only specific tools and can do fewer things, but
they do them very efficiently. GPU workers function best when they do the same few tasks
repeatedly, and when all of them are doing the same thing at the same time. After all, with so
many different workers, it is more efficient to give them all the same orders.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=39

Programmable devices take this workshop analogy into the industrial age. If CPUs and GPUs are
groups of individual workers taking sequential steps to transform inputs into outputs,
programmable devices are factories with assembly lines and conveyer belts. Raw materials are
progressively transformed into finished goods by groups of workers dispatched along assembly
lines. Each worker performs the same task repeatedly and the partially finished product is
transferred from worker to worker on the conveyer belt. This results in a much higher production
throughput.

Another major difference with programmable devices is that the factories and assembly lines do
not already exist, unlike the workshops and workers in CPUs and GPUs. To refine our analogy, a
programmable device would be like a collection of empty lots waiting to be developed. This
means that the device developer gets to build factories, assembly lines, and workstations, and
then customizes them for the required task instead of using general purpose tools. And just like
lot size, device real-estate is not infinite, which limits the number and size of the factories which
can be built in the device. Properly architecting and configuring these factories is therefore a
critical part of the device programming process.

Traditional software development is about programming functionality on a pre-defined
architecture. Programmable device development is about programming an architecture to
implement the desired functionality.

Methodology Overview
The methodology is comprised of two major phases:

1. Architecting the application

2. Developing the C/C++ kernels

In the first phase, the developer makes key decisions about the application architecture by
determining which software functions should be mapped to device kernels, how much parallelism
is needed, and how it should be delivered.

In the second phase, the developer implements the kernels. This primarily involves structuring
source code and applying the desired compiler pragma to create the desired kernel architecture
and meet the performance target.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=40

Figure 6: Methodology Overview

1. Baseline performance and
establish goals

2. Identify functions to
accelerate

3. Identify FPGA device
parallelization needs

4. Identify SW application
parallelization needs

5. Refine architectural details

1. Partition code into a load-
compute-store pattern

2. Partition compute blocks into
smaller functions

3. Identify loops for optimization

4. Improve loop latency

5. Improve loop throughput

Architecting the Application Developing C/C++ Accelerators

X23281-092619

Performance optimization is an iterative process. The initial version of an accelerated application
will likely not produce the best possible results. The methodology described in this guide is a
process involving constant performance analysis and repeated changes to all aspects of the
implementation.

Recommendations
A good understanding of the Vitis™ unified software platform programming and execution model
is critical to embarking on a project with this methodology. The following resources provide the
necessary knowledge to be productive with the Vitis software platform:

• Section II: Developing Applications

• Vitis Application Acceleration Development Flow Tutorials on GitHub.

In addition to understanding the key aspects of the Vitis software platform, a good
understanding of the following topics will help achieve optimal results with this methodology:

• Application domain

• Software acceleration principles

• Concepts, features and architecture of device

• Features of the targeted device accelerator card and corresponding target platform

• Parallelism in hardware implementations (http://kastner.ucsd.edu/hlsbook/)

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 41Send Feedback

https://github.com/Xilinx/Vitis-Tutorials
http://kastner.ucsd.edu/hlsbook/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=41

Methodology for Architecting a Device
Accelerated Application

Before beginning the development of an accelerated application, it is important to architect it
properly. In this phase, the developer makes key decisions about the architecture of the
application and determines factors such as what software functions should be mapped to device
kernels, how much parallelism is needed, and how it should be delivered.

Figure 7: Methodology for Architecting the Application

Finalize accelerator boundaries
 Decide accelerator placement and connectivity

Minimize CPU idle time
 Keep FPGA accelerators utilized
 Optimize data transfers to and from the FPGA

1. Baseline performance and
establish goals

2. Identify functions to
accelerate

3. Identify FPGA device
parallelization needs

4. Identify SW application
parallelization needs

5. Refine architectural details

Determine how much parallelism is needed
 Determine datapath width
 Determine number of compute units

X23282-092619

This section walks through the various steps involved in this process. Taking an iterative
approach through this process helps refine the analysis and leads to better design decisions.

Step 1: Establish a Baseline Application Performance
and Establish Goals
Start by measuring the runtime and throughput performance, to identify bottlenecks of the
current application running on your existing platform. These performance numbers should be
generated for the entire application (end-to-end) as well as for each major function in the
application. The most effective way is to run the application with profiling tools, like valgrind,
callgrind, and GNU gprof. The profiling data generated by these tools show the call graph
with the number of calls to all functions and their execution time. These numbers provide the
baseline for most of the subsequent analysis process. The functions that consume the most
execution time are good candidates to be offloaded and accelerated onto FPGAs.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=42

Measure Running Time

Measuring running time is a standard practice in software development. This can be done using
common software profiling tools such as gprof, or by instrumenting the code with timers and
performance counters.

The following figure shows an example profiling report generated with gprof. Such reports
conveniently show the number of times a function is called, and the amount of time spent
(runtime).

Figure 8: Gprof Output Example

Measure Throughput

Throughput is the rate at which data is being processed. To compute the throughput of a given
function, divide the volume of data the function processed by the running time of the function.

TSW = max(VINPUT, VOUTPUT) / Running Time

Some functions process a pre-determined volume of data. In this case, simple code inspection
can be used to determine this volume. In some other cases, the volume of data is variable. In this
case, it is useful to instrument the application code with counters to dynamically measure the
volume.

Measuring throughput is as important as measuring running time. While device kernels can
improve overall running time, they have an even greater impact on application throughput. As
such, it is important to look at throughput as the main optimization target.

Determine the Maximum Achievable Throughput

In most device-accelerated systems, the maximum achievable throughput is limited by the PCIe®

bus. PCIe performance is influenced by many different aspects, such as motherboard, drivers,
target platform, and transfer sizes. Run DMA tests upfront to measure the effective throughput
of PCIe transfers and thereby determine the upper bound of the acceleration potential, such as
the xbutil dma test.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=43

Figure 9: Sample Result of dmatest on an Alveo U200 Data Center Accelerator Card

An acceleration goal that exceeds this upper bound throughput cannot be met as the system will
be I/O bound. Similarly, when defining kernel performance and I/O requirements, keep this upper
bound in mind.

Establish Overall Acceleration Goals

Determining acceleration goals early in the development is necessary because the ratio between
the acceleration goal and the baseline performance will drive the analysis and decision-making
process.

Acceleration goals can be hard or soft. For example, a real-time video application could have the
hard requirement to process 60 frames per second. A data science application could have the
soft goal to run 10 times faster than an alternative implementation.

Either way, domain expertise is important for setting obtainable and meaningful acceleration
goals.

Step 2: Identify Functions to Accelerate
After establishing the performance baseline, the next step is to determine which functions
should be accelerated in the device.

TIP: Minimize changes to the existing code at this point so you can quickly generate a working design on
the FPGA and get the baselined performance and resource numbers.

When selecting functions to accelerate in hardware, there are two aspects to consider:

• Performance bottlenecks: Which functions are in application hot spots?

• Acceleration potential: Do these functions have the potential for acceleration?

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=44

Identify Performance Bottlenecks

In a purely sequential application, performance bottlenecks can be easily identified by looking at
profiling reports. However, most real-life applications are multi-threaded and it is important to
the take the effects of parallelism in consideration when looking for performance bottlenecks.

The following figure represents the performance profile of an application with two parallel paths.
The width of each rectangle is proportional to the performance of each function.

Figure 10: Application with Two Parallel Paths

while

A1

B1 B2 B3

A2

X23283-092619

The above performance visualization in the context of parallelism shows that accelerating only
one of the two paths will not improve the application's overall performance. Because paths A and
B re-converge, they are dependent upon each other to finish. Likewise, accelerating A2, even by
100x, will not have a significant impact on the performance of the upper path. Therefore, the
performance bottlenecks in this example are functions A1, B1, B2, and B3.

When looking for acceleration candidates, consider the performance of the entire application,
not just of individual functions.

Identify Acceleration Potential

A function that is a bottleneck in the software application does not necessarily have the potential
to run faster in a device. A detailed analysis is usually required to accurately determine the real
acceleration potential of a given function. However, some simple guidelines can be used to
assess if a function has potential for hardware acceleration:

• What is the computational complexity of the function?

Computational complexity is the number of basic computing operations required to execute
the function. In programmable devices, acceleration is achieved by creating highly parallel and
deeply pipelined data paths. These would be the assembly lines in the earlier analogy. The
longer the assembly line and the more stations it has, the more efficient it will be compared to
a worker taking sequential steps in his workshop.

Good candidates for acceleration are functions where a deep sequence of operations needs to
be performed on each input sample to produce an output sample.

• What is the computational intensity of the function?

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=45

Computational intensity of a function is the ratio of the total number of operations to the
total amount of input and output data. Functions with a high computational intensity are
better candidates for acceleration since the overhead of moving data to the accelerator will be
comparatively lower.

• What is the data access locality profile of the function?

The concepts of data reuse, spatial locality and temporal locality are useful to assess how
much overhead of moving data to the accelerator can be optimized. Spatial locality reflects
the average distance between several consecutive memory access operations. Temporal
locality reflects the average number of access operations for an address in memory during
program execution. The lower these measures the better, since it makes data more easily
cacheable in the accelerator, reducing the need to expensive and potentially redundant
accesses to global memory.

• How does the throughput of the function compare to the maximum achievable in a device?

Device-accelerated applications are distributed, multi-process systems. The throughput of the
overall application will not exceed the throughput of its slowest function. The nature of this
bottleneck is application specific and can come from any aspect of the system: I/O,
computation or data movement. The developer can determine the maximum acceleration
potential by dividing the throughput of the slowest function by the throughput of the selected
function.

Maximum Acceleration Potential = TMin / TSW

On Alveo Data Center accelerator cards, the PCIe bus imposes a throughput limit on data
transfers. While it may not be the actual bottleneck of the application, it constitutes a possible
upper bound and can therefore be used for early estimates. For example, considering a PCIe
throughput of 10GB/sec and a software throughput of 50MB/sec, the maximum acceleration
factor for this function is 200x.

These four criteria are not guarantees of acceleration, but they are reliable tools to identify the
right functions to accelerate on a device.

Step 3: Identify Device Parallelization Needs
After the functions to be accelerated have been identified and the overall acceleration goals have
been established, the next step is to determine what level of parallelization is needed to meet the
goals.

The factory analogy is again helpful to understand what parallelism is possible within kernels.

As described, the assembly line allows the progressive and simultaneous processing of inputs. In
hardware, this kind of parallelism is called pipelining. The number of stations on the assembly line
corresponds to the number of stages in the hardware pipeline.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=46

Another dimension of parallelism within kernels is the ability to process multiple samples at the
same time. This is like putting not just one, but multiple samples on the conveyer belt at the same
time. To accommodate this, the assembly line stations are customized to process multiple
samples in parallel. This is effectively defining the width of the datapath within the kernel.

Performance can be further scaled by increasing the number of assembly lines. This can be
accomplished by putting multiple assembly lines in a factory, and also by building multiple
identical factories with one or more assembly lines in each of them.

The developer will need to determine which combination of parallelization techniques will be
most effective at meeting the acceleration goals.

Estimate Hardware Throughput without Parallelization

The throughput of the kernel without any parallelization can be approximated as:

THW = Frequency / Computational Intensity = Frequency * max(VINPUT,
VOUTPUT) / VOPS

Frequency is the clock frequency of the kernel. This value is determined by the targeted
acceleration platform, or target platform. For instance, the maximum kernel clock on an Alveo
U200 Data Center accelerator card is 300 MHz.

As previously mentioned, the Computational Intensity of a function is the ratio of the total
number of operations to the total amount of input and output data. The formula above clearly
shows that functions with a high volume of operations and a low volume of data are better
candidates for acceleration.

Determine How Much Parallelism is Needed

After the equation above has been calculated, it is possible to estimate the initial HW/SW
performance ratio:

Speed-up = THW/TSW = Fmax * Running Time /Vops

Without any parallelization, the initial speed-up will most likely be less than 1.

Next, calculate how much parallelism is needed to meet the performance goal:

Parallelism Needed = TGoal / THW = TGoal * Vops / (Fmax * max(VINPUT, VOUTPUT))

This parallelism can be implemented in various ways: by widening the datapath, by using multiple
engines, and by using multiple kernel instances. The developer should then determine the best
combination given his needs and the characteristics of his application.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=47

Determine How Many Samples the Datapath Should be Processing
in Parallel

One possibility is to accelerate the computation by creating a wider datapath and processing
more samples in parallel. Some algorithms lend themselves well to this approach, whereas others
do not. It is important to understand the nature of the algorithm to determine if this approach
will work and if so, how many samples should be processed in parallel to meet the performance
goal.

Processing more samples in parallel using a wider datapath improves performance by reducing
the latency (running time) of the accelerated function.

Determine How Many Kernels Can and Should be Instantiated in the
Device

If the datapath cannot be parallelized (or not sufficiently), then look at adding more kernel
instances, as described in Creating Multiple Instances of a Kernel. This is usually referred to as
using multiple compute units (CUs).

Adding more kernel instances improves the performance of the application by allowing the
execution of more invocations of the targeted function in parallel, as shown below. Multiple data
sets are processed concurrently by the different instances. Application performance scales
linearly with the number of instances, provided that the host application can keep the kernels
busy.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=48

Figure 11: Improving Performance with Multiple Compute Units

func1 func2(a) func2(b) func2(c) func3CPU

func1CPU
Sequential processing on

different sets of datafunc3

PCIe

func2(a)
FPGA
CU1

func2(b)
FPGA
CU2

func2(c)
FPGA
CU3

WR RD

Multiple instances of the same
accelerator running in parallel

X23284-092619

As illustrated in the Using Multiple Compute Units tutorial, the Vitis technology makes it easy to
scale performance by adding additional instances.

At this point, the developer should have a good understanding of the amount of parallelism
necessary in the hardware to meet performance goals and, through a combination of datapath
width and kernel instances, how that parallelism will be achieved

Step 4: Identify Software Application Parallelization
Needs
While the hardware device and its kernels are architected to offer potential parallelism, the
software application must be engineered to take advantage of this potential parallelism.

Parallelism in the software application is the ability for the host application to:

• Minimize idle time and do other tasks while the device kernels are running.

• Keep the device kernels active performing new computations as early and often as possible.

• Optimize data transfers to and from the device.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 49Send Feedback

https://github.com/Xilinx/SDAccel-Tutorials/blob/master/docs/using-multiple-cu/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=49

Figure 12: Software Optimization Goals

func1CPU

Aim to reduce
CPU idle time

func3

PCIe

func2FPGA

WR RD

func4

Aim to optimize
data transfers

Aim to
maximize kernel

utilization
X23285-092619

In the world of factories and assembly lines, the host application would be the headquarters
keeping busy and planning the next generation of products while the factories manufacture the
current generation.

Similarly, headquarters must orchestrate the transport of goods to and from the factories and
send them requests. What is the point of building many factories if the logistics department
doesn’t send them raw material or blueprints of what to create?

Minimize CPU Idle Time While the Device Kernels are Running

Device-acceleration is about offloading certain computations from the host processor to the
kernels in the device. In a purely sequential model, the application would be waiting idly for the
results to be ready and resume processing, as shown in the above figure.

Instead, engineer the software application to avoid such idle cycles. Begin by identifying parts of
the application that do not depend on the results of the kernel. Then structure the application so
that these functions can be executed on the host in parallel to the kernel running in the device.

Keep the Device Kernels Utilized

Kernels might be present in the device, but they will only run when the application requests
them. To maximize performance, engineer the application so that it will keep the kernels busy.

Conceptually, this is achieved by issuing the next requests before the current ones have
completed. This results in pipelined and overlapping execution, leading to kernels being optimally
utilized, as shown in the following figure.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=50

Figure 13: Pipelined Execution of Accelerators

func1 func2 func3CPU

AP
I

CPU

Repeating sequence of
function calls

PCIe

func1
FPGA

K1

FPGA
K2

FPGA
K3

WR

Accelerators are always running

AP
I

AP
I

AP
I

AP
I

AP
I

AP
I

AP
I

AP
I

WR WR

func1 func1

RDRD RD

func2 func2 func2

func3 func3 func3

AP
I

Accelerator are executing in a
pipelined and overlapping fashion

AP
I

AP
I

X23286-092619

In this example, the original application repeatedly calls func1, func2 and func3. Corresponding
kernels (K1, K2, K3) have been created for the three functions. A naïve implementation would
have the three kernels running sequentially, like the original software application does. However,
this means that each kernel is active only a third of the time. A better approach is to structure the
software application so that it can issue pipelined requests to the kernels. This allows K1 to start
processing a new data set at the same time K2 starts processing the first output of K1. With this
approach, the three kernels are constantly running with maximized utilization.

More information on software pipelining can be found in the Vitis Application Acceleration
Development Flow Tutorials.

Optimize Data Transfers to and from the Device

In an accelerated application, data must be transferred from the host to the device especially in
the case of PCIe-based applications. This introduces latency, which can be very costly to the
overall performance of the application.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 51Send Feedback

https://github.com/Xilinx/Vitis-Tutorials/blob/master/docs/host-code-opt/README.md
https://github.com/Xilinx/Vitis-Tutorials/blob/master/docs/host-code-opt/README.md
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=51

Data needs to be transferred at the right time, otherwise the application performance is
negatively impacted if the kernel must wait for data to be available. It is therefore important to
transfer data ahead of when the kernel needs it. This is achieved by overlapping data transfers
and kernel execution, as described in Keep the Device Kernels Utilized. As shown in the
sequence in the previous figure, this technique enables hiding the latency overhead of the data
transfers and avoids the kernel having to wait for data to be ready.

Another method of optimizing data transfers is to transfer optimally sized buffers. As shown in
the following figure, the effective PCIe throughput varies greatly based on the transferred buffer
size. The larger the buffer, the better the throughput, ensuring the accelerators always have data
to operate on and are not wasting cycles. It is usually better to make data transfers of 1MB or
more. Running DMA tests upfront can be useful for finding the optimal buffer sizes. Also, when
determining optimal buffer sizes, consider the effect of large buffers on resource utilization and
transfer latency.

Another method of optimizing data transfers is to transfer optimally sized buffers. The effective
data transfer throughput varies greatly based on the size of transferred buffer. The larger the
buffer, the better the throughput, ensuring the accelerators always have data to operate on and
are not wasting cycles.

As shown in the following figure, on PCIe-based systems it is usually better to make data
transfers of 1MB or more. Running DMA tests in advance using the xbutil utility can be useful for
finding the optimal buffer sizes. See dmatest for more information.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=52

Figure 14: Performance of PCIe Transfers as a Function of Buffer Size

PC
Ie

 th
ro

ug
hp

ut

2MB Buffer size

FPGA throughput

X23287-092619

It is recommended that you group multiple sets of data in a common buffer to achieve the
highest possible throughput.

Conceptualize the Desired Application Timeline

The developer should now have a good understanding of what functions need to be accelerated,
what parallelism is needed to meet performance goals, and how the application will be delivered.

At this point, it is very useful to summarize this information in the form of an expected
application timeline. Application timeline sequences, such as the ones shown in Keep the Device
Kernels Utilized, are very effective ways of representing performance and parallelization in action
as the application runs. They represent how the potential parallelism built into the architecture is
mobilized by the application.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=53

Figure 15: Application Timelines

The Vitis software platform generates timeline views from actual application runs. If the
developer has a desired timeline in mind, he can then compare it to the actual results, identify
potential issues, and iterate and converge on the optimal results, as shown in the above figure.

Step 5: Refine Architectural Details
Before proceeding with the development of the application and its kernels, the final step consists
of refining and deriving second order architectural details from the top-level decisions made up
to this point.

Finalize Kernel Boundaries

As discussed earlier, performance can be improved by creating multiple instances of kernels
(compute units). However, adding CUs has a cost in terms of I/O ports, bandwidth, and resources.

In the Vitis software platform flow, kernel ports have a maximum width of 512 bits (64 bytes) and
have a fixed cost in terms of device resources. Most importantly, the targeted platform sets a
limit on the maximum number of ports which can be used. Be mindful of these constraints and
use these ports and their bandwidth optimally.

An alternative to scaling with multiple compute units is to scale by adding multiple engines
within a kernel. This approach allows increasing performance in the same way as adding more
CUs: multiple data sets are processed concurrently by the different engines within the kernel.

Placing multiple engines in the same kernel takes the fullest advantage of the bandwidth of the
kernel’s I/O ports. If the datapath engine does not require the full width of the port, it can be
more efficient to add additional engines in the kernel than to create multiple CUs with single
engines in them.

Putting multiple engines in a kernel also reduces the number of ports and the number of
transactions to global memory that require arbitration, improving the effective bandwidth.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=54

On the other hand, this transformation requires coding explicit I/O multiplexing behavior in the
kernel. This is a trade-off the developer needs to make.

Decide Kernel Placement and Connectivity

After the kernel boundaries have been finalized, the developer knows exactly how many kernels
will be instantiated and therefore how many ports will need to be connected to global memory
resources.

At this point, it is important to understand the features of the target platform and what global
memory resources are available. For instance, the Alveo™ U200 Data Center accelerator card has
4 x 16 GB banks of DDR4 and 3 x 128 KB banks of PLRAM distributed across three super-logic
regions (SLRs). For more information, refer to Vitis 2020.1 Software Platform Release Notes.

If kernels are factories, then global memory banks are the warehouses through which goods
transit to and from the factories. The SLRs are like distinct industrial zones where warehouses
preexist and factories can be built. While it is possible to transfer goods from a warehouse in one
zone to a factory in another zone, this can add delay and complexity.

Using multiple DDRs helps balance the data transfer loads and improves performance. This
comes with a cost, however, as each DDR controller consumes device resources. Balance these
considerations when deciding how to connect kernel ports to memory banks. As explained in
Mapping Kernel Ports to Global Memory, establishing these connections is done through a
simple compiler switch, making it easy to change configurations if necessary.

After refining the architectural details, the developer should have all the information necessary to
start implementing the kernels, and ultimately, assembling the entire application.

Methodology for Developing C/C++ Kernels
The Vitis software platform supports kernels modeled in either C/C++ or RTL (Verilog, VHDL,
System Verilog). This methodology guide applies to C/C++ kernels. For details on developing RTL
kernels, see RTL Kernels.

The following key kernel requirements for optimal application performance should have already
been identified during the architecture definition phase:

• Throughput goal

• Latency goal

• Datapath width

• Number of engines

• Interface bandwidth

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=55

These requirements drive the kernel development and optimization process. Achieving the kernel
throughput goal is the primary objective, as overall application performance is predicated on
each kernel meeting the specified throughput.

The kernel development methodology therefore follows a throughput-driven approach and
works from the outside-in. This approach has two phases, as also described in the following
figure:

1. Defining and implementing the macro-architecture of the kernel

2. Coding and optimizing the micro-architecture of the kernel

Before starting the kernel development process, it is essential to understand the difference
between functionality, algorithm, and architecture; and how they pertain to the kernel
development process.

• Functionality is the mathematical relationship between input parameters and output results.

• Algorithm is a series of steps for performing a specific functionality. A given functionality can
be performed using a variety of different algorithms. For instance, a sort function can be
implemented using a "quick sort" or a "bubble sort" algorithm.

• Architecture, in this context, refers to the characteristics of the underlying hardware
implementation of an algorithm. For instance, a particular sorting algorithm can be
implemented with more or less comparators executing in parallel, with RAM or register-based
storage, and so on.

You must understand that the Vitis compiler generates optimized hardware architectures from
algorithms written in C/C++. However, it does not transform a particular algorithm into another
one.

Therefore, because the algorithm directly influences data access locality as well as potential for
computational parallelism, your choice of algorithm has a major impact on achievable
performance, more so than the compiler's abilities or user specified pragmas.

The following methodology assumes that you have identified a suitable algorithm for the
functionality that you want to accelerate.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=56

Figure 16: Kernel Development Methodology

Calculate latency target for each loop
 Generate HLS reports
 Identify loops exceeding latency target

Unroll loops
 Partition and reshape arrays

Eliminate I/O contentions
 Eliminate loop-carried dependencies

Decompose compute to meet throughput goal
 Aim for functions with a single loop nest
 Connect functions following dataflow style

Create top level functions with desired interface
 Code load, compute, store functions
 Connect functions following dataflow style

1. Partition code into a load-
compute-store pattern

2. Partition compute blocks into
smaller functions

3. Identify loops for optimization

4. Improve loop latency

5. Improve loop throughput

Macro
architecture

Micro
architecture

X23288-092619

About the High-Level Synthesis Compiler
Before starting the kernel development process, the developer should have familiarity with high-
level synthesis (HLS) concepts. The HLS compiler turns C/C++ code into RTL designs which then
map onto the device fabric.

The HLS compiler is more restrictive than standard software compilers. For example, there are
unsupported constructs including: system function calls, dynamic memory allocation and
recursive functions. For more information, see Unsupported C Constructs in the Vitis HLS Flow.

More importantly, always keep in mind that the structure of the C/C++ source code has a strong
impact on the performance of the generated hardware implementation. This methodology guide
will help you structure the code to meet the application throughput goals. For specific
information on programming kernels, see C/C++ Kernels.

Verification Considerations
This methodology described in this guide is iterative in nature and involves successive code
modifications. Xilinx® recommends verifying the code after each modification. This can be done
using standard software verification methods or with the Vitis integrated design environment
(IDE) software or hardware emulation flows. In either case, make sure your testing provides
sufficient coverage and verification quality.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 57Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=programmingvitishls.html;a=pdd1539734241607.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=57

Step 1: Partition the Code into a Load-Compute-Store
Pattern
A kernel is essentially a custom datapath (optimized for the desired functionality) and an
associated data storage and motion network. Also referred to as the memory architecture or
memory hierarchy of the kernel, this data storage and motion network is responsible for moving
data in and out of the kernel and through the custom datapath as efficiently as possible.

Knowing that kernel accesses to global memory are expensive and that bandwidth is limited, it is
very important to carefully plan this aspect of the kernel.

To help with this, the first step of the kernel development methodology requires structuring the
kernel code into the load-compute-store pattern.

This means creating a top-level function with:

• Interface parameters matching the desired kernel interface.

• Three sub-functions: load, compute, and store.

• Local arrays or hls::stream variables to pass data between these functions.

Figure 17: Load-Compute-Store Pattern

Load Compute StoreFrom DDR/Stream Ping Pong
Buffer/FIFO

Ping Pong
Buffer/FIFO To DDR/Stream

X23289-092619

Structuring the kernel code this way enables task-level pipelining, also known as HLS dataflow.
This compiler optimization results in a design where each function can run simultaneously,
creating a pipeline of concurrently running tasks. This is the premise of the assembly line in our
factory, and this structure is key to achieving and sustaining the desired throughput. For more
information about HLS dataflow, see Dataflow Optimization.

The load function is responsible for moving data external to the kernel (i.e. global memory) to the
compute function inside the kernel. This function doesn’t do any data processing but focuses on
efficient data transfers, including buffering and caching if necessary.

The compute function, as its name suggests, is where all the processing is done. At this stage of
the development flow, the internal structure of the compute function isn’t important.

The store function mirrors the load function. It is responsible for moving data out of the kernel,
taking the results of the compute function and transferring them to global memory outside the
kernel.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=58

Creating a load-compute-store structure that meets the performance goals starts by engineering
the flow of data within the kernel. Some factors to consider are:

• How does the data flow from outside the kernel into the kernel?

• How fast does the kernel need to process this data?

• How is the processed data written to the output of the kernel?

Understanding and visualizing the data movement as a block diagram will help to partition and
structure the different functions within the kernel.

A working example featuring the load-compute-store pattern can be found on the Vitis Examples
GitHub repository.

Create a Top-Level Function with the Desired Interface

The Vitis technology infers kernel interfaces from the parameters of the top-level function.
Therefore, start by writing a kernel top-level function with parameters matching the desired
interface.

Input parameters should be passed as scalars. Blocks of input and output data should be passed
as pointers. Compiler pragmas should be used to finalize the interface definition. For complete
details, see Interfaces.

Code the Load and Store Functions

Data transfers between the kernel and global memories have a very big influence on overall
system performance. If not properly done, they will throttle the kernel. It is therefore important
to optimize the load and store functions to efficiently move data in and out of the kernel and
optimally feed the compute function.

The layout of data in global memory matches the layout of data in the software application. This
layout must be known when writing the load and store functions. Conversely, if a certain data
layout is more favorable for moving data in and out of the kernel, it is possible to adapt buffer
layout in the software application. Either way, the kernel developer and application developer
need to agree on how data is organized in buffers and global memory.

The following are guidelines for improving the efficiency of data transfers in and out of the
kernel.

Match Port Width to Datapath Width

In the Vitis software platform, the port of a kernel can be up to 512 bits wide, which means that
a kernel can read or write up to 64 bytes per clock cycle per port.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 59Send Feedback

https://github.com/Xilinx/Vitis_Accel_Examples
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=59

It is recommended to match the width of the kernel ports to width of the datapath in the
compute function. For instance, if the datapath needs to process 16 bytes in parallel to meet the
desired throughput, then ports should be made 128 bit wide to allow reading and writing 16
bytes in parallel.

In some case, it might be useful to access the full width bits of the interface even if the datapath
doesn’t need them. This can help reduce contention when many kernels are trying to access the
same global memory bank. However, this will usually lead to additional buffering and internal
memory resources in the kernel.

Use Burst Transfers

The first read or write request to global memory is expensive, but subsequent contiguous
operations are not. Transferring data in bursts hides the memory access latency and improves
bandwidth usage and efficiency of the memory controller.

Atomic accesses to global memory should always be avoided unless absolutely required. The load
and store functions should be coded to always infer bursting transaction. This can be done using
a memcpy operation as shown in the vadd.cpp file in the GitHub example, or by creating a tight
for loop accessing all the required values sequentially, as explained in Interfaces in Section II:
Developing Applications.

Minimize the Number of Data Transfers from Global Memory

Since accesses to global memory can add significant latency to the application, only make
necessary transfers.

The guideline is to only read and write the necessary values, and only do so once. In situations
where the same value must be used several times by the compute function, buffer this value
locally instead of reading it from global memory again. Coding the proper buffering and caching
structure can be key to achieving the throughput goal.

Code the Compute Functions

The compute function is where all the actual processing is done. This first step of the
methodology is focused on getting the top-level structure right and optimizing data movement.
The priority is to have a function with the right interfaces and make sure the functionality is
correct. The following sections focus on the internal structure of the compute function.

Connect the Load, Compute, and Store Functions

Use standard C/C++ variables and arrays to connect the top-level interfaces and the load,
compute and store functions. It can also be useful to use the hls::stream class, which models a
streaming behavior.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 60Send Feedback

https://github.com/Xilinx/SDAccel_Examples/blob/master/getting_started/kernel_to_gmem/burst_rw_c/src/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=60

Streaming is a type of data transfer in which data samples are sent in sequential order starting
from the first sample. Streaming requires no address management and can be implemented with
FIFOs. For more information about the hls::stream class, see Using HLS Streams in the Vitis HLS
Flow.

When connecting the functions, use the canonical form required by the HLS compiler. See this
Dataflow Optimization for more information. This helps the compiler build a high-throughput set
of tasks using the dataflow optimization. Key recommendations include:

• Data should be transferred in the forward direction only, avoiding feedback whenever
possible.

• Each connection should have a single producer and a single consumer.

• Only the load and store functions should access the primary interface of the kernel.

At this point, the developer has created the top-level function of the kernel, coded the interfaces
and the load/store functions with the objective of moving data through the kernel at the desired
throughput.

Step 2: Partition the Compute Blocks into Smaller
Functions
The next step is to refine the main compute function, decomposing it into a sequence of smaller
sub-functions, as shown in the following figure.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 61Send Feedback

https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/hlsstreamlib.html;a=txc1539734234229
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=61

Figure 18: Compute Block Sub-Functions

Load Compute Store

Kernel Top-level

Compute Compute

for { _ } {
 for { _ } {
 _
 }
 {

Compute block, recursively decomposed
in smaller sub-functions consisting of

single, perfectly-nested, loops

X23290-092619

Decompose to Identify Throughput Goals

In a dataflow system like the one created with this approach, the slowest task will be the
bottleneck.

Throughput(Kernel) = min(Throughput(Task1), Throughput(Task2), …,
Throughput(TaskN))

Therefore, during the decomposition process, always have the kernel throughput goal in mind
and assess whether each sub-function will be able to satisfy this throughput goal.

In the following steps of this methodology, the developer will get actual throughput numbers
from running the Vitis HLS compiler. If these results cannot be improved, the developer will have
to iterate and further decompose the compute stages.

Aim for Functions with a Single Loop Nest

As a general rule, if a function has sequential loops in it, these loops execute sequentially in the
hardware implementation generated by the HLS compiler. This is usually not desirable, as
sequential execution hampers throughput.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=62

However, if these sequential loops are pushed into sequential functions, then the HLS compiler
can apply the dataflow optimization and generate an implementation that allows the pipelined
and overlapping execution of each task. For more information on the dataflow optimization, see
Exploiting Task Level Parallelism: Dataflow Optimization in the Vitis HLS Flow.

During this partitioning and refining process, put sequential loops into individual functions.
Ideally, the lowest-level compute block should only contain a single perfectly-nested loop. For
more information on loops, see Loops.

Connect Compute Functions Using the Dataflow ‘Canonical Form’

The same rules regarding connectivity within the top-level function apply when decomposing the
compute function. Aim for feed-forward connections and having a single producer and consumer
for each connecting variable. If a variable must be consumed by more than one function, then it
should be explicitly duplicated.

When moving blocks of data from one compute block to another, the developer can choose to
use arrays or hls::stream objects.

Using arrays requires fewer code changes and is usually the fastest way to make progress during
the decomposition process. However, using hls::stream objects can lead to designs using less
memory resources and having shorter latency. It also helps the developer reason about how data
moves through the kernel, which is always an important thing to understand when optimizing for
throughput.

Using hls::stream objects is usually a good thing to do, but it is up to the developer to determine
the most appropriate moment to convert arrays to streams. Some developers will do this very
early on while others will do this at the very end, as a final optimization step. This can also be
done using the pragma HLS dataflow.

At this stage, maintaining a graphical representation of the architecture of the kernel can be very
useful to reason through data dependencies, data movement, control flows, and concurrency.

Step 3: Identify Loops Requiring Optimization
At this point, the developer has created a dataflow architecture with data motion and processing
functions intended to sustain the throughput goal of the kernel. The next step is to make sure
that each of the processing functions are implemented in a way that deliver the expected
throughput.

As explained before, the throughput of a function is measured by dividing the volume of data
processed by the latency, or running time, of the function.

T = max(VINPUT, VOUTPUT) / Latency

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 63Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=programmingvitishls.html;a=bmx1539734225930
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=zof1504034359187
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=63

Both the target throughput and the volume of data consumed and produced by the function
should be known at this stage of the ‘outside-in’ decomposition process described in this
methodology. The developer can therefore easily derive the latency target for each function.

The Vitis HLS compiler generates detailed reports on the throughput and latency of functions
and loops. Once the target latencies have been determined, use the HLS reports to identify
which functions and loops do not meet their latency target and require attention, as described in
HLS Report.

The latency of a loop can be calculated as follows:

LatencyLoop = (Steps + II x (TripCount – 1)) x ClockPeriod

Where:

• Steps: Duration of a single loop iteration, measured in number of clock cycles

• TripCount: Number of iterations in the loop.

• II: Initiation Interval, the number of clock cycles between the start of two consecutive
iterations. When a loop is not pipelined, its II is equal to the number of Steps.

Assuming a given clock period, there are three ways to reduce the latency of a loop, and thereby
improve the throughput of a function:

• Reduce the number of Steps in the loop (take less time to perform one iteration).

• Reduce the Trip Count, so that the loop performs fewer iterations.

• Reduce the Initiation Interval, so that loop iterations can start more often.

Assuming a trip count much larger than the number of steps, halving either the II or the trip
count can be sufficient to double the throughput of the loop.

Understanding this information is key to optimizing loops with latencies exceeding their target.
By default, the Vitis HLS compiler will try to generate loop implementations with the lowest
possible II. Start by looking at how to improve latency by reducing the trip count or the number
of steps. See Loops for more information.

Step 4: Improve Loop Latencies
After identifying loops latencies that exceed their target, the first optimization to consider is loop
unrolling.

Apply Loop Unrolling

Loop unrolling unwinds the loop, allowing multiple iterations of the loop to be executed together,
reducing the loop’s overall trip count.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=64

In the industrial analogy, factories are kernels, assembly lines are dataflow pipelines, and stations
are compute functions. Unrolling creates stations which can process multiple objects arriving at
the same time on the conveyer belt, which results in higher performance.

Figure 19: Loop Unrolling

acc

for (int i = 0; i < N; i + +)
{
 acc += A [i] + B [i];
}

for (int i = 0; i < N; i + +)
{
 #pragma HLS UNROLL factor=4
 acc += A [i] * B [i] ;
}

x acc

x

x

+

x

x

+

+

1x datapath width
N iterations
1 sample per iteration

4x datapath width
N/4 iterations
4 samples per iteration

X23291-092619

Loop unrolling can widen the resulting datapath by the corresponding factor. This usually
increases the bandwidth requirements as more samples are processed in parallel. This has two
implications:

• The width of the function I/Os must match the width of the datapath and vice versa.

• No additional benefit is gained by loop unrolling and widening the datapath to the point
where I/O requirements exceed the maximum size of a kernel port (512 bits / 64 bytes).

The following guidelines will help optimize the use of loop unrolling:

• Start from the innermost loop within a loop nest.

• Assess which unroll factor would eliminate all loop-carried dependencies.

• For more efficient results, unroll loops with fixed trip counts.

• If there are function calls within the unrolled loop, in-lining these functions can improve
results through better resource sharing, although at the expense of longer synthesis times.
Note also that the interconnect may become increasingly complex and lead to routing
problems later on.

• Do not blindly unroll loops. Always unroll loops with a specific outcome in mind.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=65

Apply Array Partitioning

Unrolling loops changes the I/O requirements and data access patterns of the function. If a loop
makes array accesses, as is almost always the case, make sure that the resulting datapath can
access all the data it needs in parallel.

If unrolling a loop doesn’t result in the expected performance improvement, this is almost always
because of memory access bottlenecks.

By default, the Vitis HLS compiler maps large arrays to memory resources with a word width
equal to the size of one array element. In most cases, this default mapping needs to be changed
when loop unrolling is applied.

As explained in Array Configuration, the HLS compiler supports various pragmas to partition and
reshape arrays. Consider using these pragmas when loop unrolling to create a memory structure
that allows the desired level of parallel accesses.

Unrolling and partitioning arrays can be sufficient to meet the latency and throughput goals for
the targeted loop. If so, shift to the next loop of interest. Otherwise, look at additional
optimizations to improve throughput.

Step 5: Improve Loop Throughput
If improving loop latency by reducing the trip count was not sufficient, look at ways to reduce the
initiation interval (II).

The loop II is the count of clock cycles between the start of two loop iterations. The Vitis HLS
compiler will always try to pipeline loops, minimize the II, and start loop iterations as early as
possible, ideally starting a new iteration each clock cycle (II=1).

There are two main factors that can limit the II:

• I/O contentions

• Loop-carried dependencies

The HLS Schedule Viewer automatically highlights loop dependencies limiting the II. It is a very
useful visualization tool to use when working to improve the II of a loop.

Eliminate I/O Contentions

I/O contentions appear when a given I/O port of internal memory resources must be accessed
more than once per loop iteration. A loop cannot be pipelined with an II lower than the number
of times an I/O resource is accessed per loop iteration. If port A must be accessed four times in a
loop iteration, then the lowest possible II will be 4 in single-port RAM.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=66

The developer needs to assess whether these I/O accesses are necessary or if they can be
eliminated. The most common techniques for reducing I/O contentions are:

• Creating internal cache structures

If some of the problematic I/O accesses involve accessing data already accessed in prior loop
iterations, then a possibility is to modify the code to make local copies of the values accessed
in those earlier iterations. Maintaining a local data cache can help reduce the need for external
I/O accesses, thereby improving the potential II of the loop.

This example on the Vitis Accel Examples GitHub repository illustrates how a shift register can
be used locally, cache previously read values, and improve the throughput of a filter.

• Reconfiguring I/Os and memories

As explained earlier in the section about improving latency, the HLS compiler maps arrays to
memories, and the default memory configuration can not offer sufficient bandwidth for the
required throughput. The array partitioning and reshaping pragmas can also be used in this
context to create memory structure with higher bandwidth, thereby improving the potential II
of the loop.

Eliminate Loop-Carried Dependencies

The most common case for loop-carried dependencies is when a loop iteration relies on a value
computed in a prior iteration. There are differences whether the dependencies are on arrays or
on scalar variables. For more information, see Optimal Loop Unrolling to Improve Pipelining in
the Vitis HLS Flow.

• Eliminating dependencies on arrays

The HLS compiler performs index analysis to determine whether array dependencies exist
(read-after-write, write-after-read, write-after-write). The tool may not always be able to
statically resolve potential dependencies and will in this case report false dependencies.

Special compiler pragmas can overwrite these dependencies and improve the II of the design.
In this situation, be cautious and do not overwrite a valid dependency.

• Eliminating dependencies on scalars

In the case of scalar dependencies, there is usually a feedback path with a computation
scheduled over multiple clock cycles. Complex arithmetic operations such as multiplications,
divisions, or modulus are often found on these feedback paths. The number of cycles in the
feedback path directly limits the potential II and should be reduced to improve II and
throughput. To do so, analyze the feedback path to determine if and how it can be shortened.
This can potentially be done using HLS scheduling constraints or code modifications such as
reducing bit widths.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 67Send Feedback

https://github.com/Xilinx/Vitis_Accel_Examples
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=programmingvitishls.html;a=tta1539734225808
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=67

Advanced Techniques

If an II of 1 is usually the best scenario, it is rarely the only sufficient scenario. The goal is to meet
the latency and throughput goal. To this extent, various combinations of II and unroll factor are
often sufficient.

The optimization methodology and techniques presented in this guide should help meet most
goals. The HLS compiler also supports many more optimization options which can be useful
under specific circumstances. A complete reference of these optimizations can be found in HLS
Pragmas.

Section I: Introduction to the Vitis Unified Software Platform
Chapter 4: Methodology for Accelerating Applications with the Vitis Software

Platform

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=68

Section II

Developing Applications
Revision History

The following table shows the revision history for this section.

Section Revision Summary
08/20/2020 Version 2020.1

Entire section No updates to this section.

06/24/2020 Version 2020.1

Package the RTL Code as a Vivado IP Updated instructions.

06/03/2020 Version 2020.1

Memory Interface Width Considerations Added information for supporting the automatic widening
of interfaces.

Process Execution Modes Added details on types of process execution modes.

Streaming Interfaces Added information on types of streaming interfaces
available.

C/C++ Kernels Added details for Vitis HLS.

Package the RTL Code as a Vivado IP Added requirements and instructions for packaging IP.

Streaming Data Between the Host and Kernel (H2K) Updated clCreateStream API flow.

Streaming Data Transfers Added details for Vitis™ HLS.

Entire section Updated figures and tool commands.

This section contains the following chapters:

• Programming Model

• Host Application

• Kernel Properties

• C/C++ Kernels

• RTL Kernels

• Streaming Data Transfers

• OpenCL Kernels

• Best Practices for Acceleration with Vitis

Section II: Developing Applications

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=69

Chapter 5

Programming Model
The Vitis™ core development kit supports heterogeneous computing using the industry standard
OpenCL™ framework (https://www.khronos.org/opencl/). The host program executes on the
processor (x86 or Arm®) and offloads compute intensive tasks through Xilinx Runtime (XRT) to
execute on a hardware kernel running on programmable logic (PL) using the OpenCL
programming paradigm.

Device Topology
In the Vitis core development kit, targeted devices can include Xilinx® MPSoCs or UltraScale+™
FPGAs connected to a processor, such as an x86 host through a PCIe bus, or an Arm processor
through an AXI4 interface. The FPGA contains a programmable region that implements and
executes hardware kernels.

The FPGA platform contains one or more global memory banks. The data transfer from the host
machine to kernels and from kernels to the host happens through these global memory banks.
The kernels running in the FPGA can have one or more memory interfaces. The connection from
the global memory banks to those memory interfaces are configurable, as their features are
determined by the kernel compilation options.

Multiple kernels can be implemented in the PL of the Xilinx device, allowing for significant
application acceleration. A single kernel can also be instantiated multiple times. The number of
instances of a kernel is programmable, and determined by linking options specified when building
the FPGA binary. For more information on specifying these options, refer to Linking the Kernels.

Kernel Properties
In the Vitis application acceleration development flow, kernels are the processing elements
executing in the PL region of the Xilinx device. The Vitis software platform supports kernels
written in C/C++, RTL, or OpenCL C. Regardless of source language, all kernels have the same
properties and must adhere to same set of requirements. This is what allows the system compiler
linker and Xilinx Runtime (XRT) to seamlessly interact with the kernels.

Section II: Developing Applications
Chapter 5: Programming Model

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 70Send Feedback

https://www.khronos.org/opencl/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=70

This topic describes the properties and requirements of kernels in the Vitis application
acceleration flow. The following topics discuss how these requirements are satisfied based on the
specific source languages:

• C/C++ Kernels

• RTL Kernels

• OpenCL Kernels

Kernel Execution Modes
There are three types of kernel execution modes, as described in the following table. These
modes are mutually exclusive; each kernel can only operate in one of these modes. Kernels with
different execution modes can be linked together by the Vitis linker to form the FPGA binary.

Sequential Mode Pipelined Mode Free-Running Mode

• A kernel is started by the host
application using an API call.

• Once the kernel is done, it notifies
the host application.

• The kernel can only restart once
current task is completed.

• Legacy mode for kernels using
memory-based data transfers.

• A kernel is started by the host
application using an API call.

• Once the kernel is ready for new
data, it notifies the host application.

• The kernel can be restarted before
its current task is completed.

• Improves performance as multiple
invocations of kernel can be
overlapped.

• Default mode for kernels using
memory-based data transfers.

• A kernel starts as soon as the
device is programmed with the
xclbin.

• A kernel is running continuously
and synchronizes on availability of
data.

• Free-running mode is not
supported for kernels described in
OpenCL C.

Kernel Interfaces
Kernel interfaces are used to exchange data with the host application, other kernels, or device
I/Os. There are three types of interfaces allowed, each designed for a particular kind of data
transfer. It is common for kernels to have multiple interfaces of different types.

Functional Properties

The following table describes the functional properties of kernel interfaces.

Section II: Developing Applications
Chapter 5: Programming Model

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=71

Table 3: Functional Properties

Register Memory Mapped Streaming

• Designed for transferring scalars
between the host application and
the kernel.

• Register reads and writes are
initiated by the host application.

• The kernel acts as a slave.

• Designed for bi-directional data
transfers with global memory (DDR,
PLRAM, HBM)

• Access pattern is usually random.
• Introduces additional latency for

memory transfers
• The kernel acts as a master

accessing data stored into global
memory

• Base address of data is sent via the
Register interface

• The host application allocates the
buffer for the size of the dataset.

• Free-running kernels cannot have
memory mapped interfaces.

• Designed for uni-directional data
transfers from between kernels or
between the host application and
kernels.

• Access pattern is sequential.
• Does not use global memory.
• Better performance than memory-

mapped transfers.
• Data set is unbounded.
• Sideband signal can be used to

indicate the last value in the
stream.

Implementation Requirements

Each interface type must be implemented using specific hardware protocols. This is what allows
the system compiler linker to integrate and compose kernels together with the platform. The
following table describes the requirements for mapping interfaces to hardware.

Table 4: Implementation Requirements

Register Memory Mapped Streaming

• Register interfaces must be
implemented using an AXI4-Lite
interface.

• Kernel can have no more than one
AXI4-Lite interface.

• Memory mapped interfaces must
be implemented using AXI4
Masters.

• Kernels can have one or more AXI4
Master interfaces.

• Different memory-mapped
arguments can be transferred
through the same AXI4 Master.

• Streaming interfaces must be
implemented using AXI4-Stream
interfaces

• Kernel can have one or more AXI4-
Stream interfaces.

Clock and Reset Requirements
C/C++/OpenCL C Kernel RTL Kernel

C kernel does not require any input from user on clock ports
and reset ports. The HLS tool will always generate RTL with
clock port ap_clk and reset port ap_rst_n.

• Requires a clock port. Must be named ap_clk.

• Optional clock port. Must be named ap_clk_2.

• Optional reset port. Must be named ap_rst_n. This
signal is driven by the synchronous reset in the ap_clk
clock domain.

• This reset signal is active-Low.
• Another optional reset port. Must be named

ap_rst_n_2. This signal is driven by synchronous reset
in the ap_clk_2 clock domain.

Section II: Developing Applications
Chapter 5: Programming Model

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=72

Chapter 6

Host Application
In the Vitis core development kit, host code is written in C or C++ language using the industry
standard OpenCL API. The Vitis core development kit provides an OpenCL 1.2 embedded profile
conformant runtime API.

In general, the structure of the host code can be divided into three sections:

1. Setting up the environment.

2. Core command execution including executing one or more kernels.

3. Post processing and release of resources.

Note: The Vitis core development kit supports the OpenCL Installable Client Driver (ICD) extension
(cl_khr_icd). This extension allows multiple implementations of OpenCL to co-exist on the same
system. For details and installation instructions, refer to OpenCL Installable Client Driver Loader.

Note: For multithreading the host program, exercise caution when calling a fork() system call from a Vitis
core development kit application. The fork() does not duplicate all the runtime threads. Hence, the child
process cannot run as a complete application in the Vitis core development kit. It is advisable to use the
posix_spawn() system call to launch another process from the Vitis software platform application.

Setting Up the OpenCL Environment
The host code in the Vitis core development kit follows the OpenCL programming paradigm. To
set the environment properly, the host application needs to initialize the standard OpenCL
structures: target platform, devices, context, command queue, and program.

TIP: The host code examples and API commands used in this document follow the OpenCL C API.
However, XRT also supports the OpenCL C++ wrapper API, and many of the Vitis Examples are written
using the C++ API. For more information on this C++ wrapper API, refer to https://www.khronos.org/
registry/OpenCL/specs/opencl-cplusplus-1.2.pdf.

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 73Send Feedback

https://github.com/Xilinx/Vitis_Accel_Examples
https://www.khronos.org/registry/OpenCL/specs/opencl-cplusplus-1.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-cplusplus-1.2.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=73

Platform
Upon initialization, the host application needs to identify a platform composed of one or more
Xilinx devices. The following code fragment shows a common method of identifying a Xilinx
platform.

cl_platform_id platform_id; // platform id

err = clGetPlatformIDs(16, platforms, &platform_count);

// Find Xilinx Platform
for (unsigned int iplat=0; iplat<platform_count; iplat++) {
 err = clGetPlatformInfo(platforms[iplat],
 CL_PLATFORM_VENDOR,
 1000,
 (void *)cl_platform_vendor,
 NULL);

 if (strcmp(cl_platform_vendor, "Xilinx") == 0) {
 // Xilinx Platform found
 platform_id = platforms[iplat];
 }
}

The OpenCL API call clGetPlatformIDs is used to discover the set of available OpenCL
platforms for a given system. Then, clGetPlatformInfo is used to identify Xilinx device based
platforms by matching cl_platform_vendor with the string "Xilinx".

RECOMMENDED: Though it is not explicitly shown in the preceding code, or in other host code examples
used throughout this chapter, it is always a good coding practice to use error checking after each of the
OpenCL API calls. This can help debugging and improve productivity when you are debugging the host and
kernel code in the emulation flow, or during hardware execution. The following code fragment is an error
checking code example for the clGetPlatformIDs command.

err = clGetPlatformIDs(16, platforms, &platform_count);
if (err != CL_SUCCESS) {
 printf("Error: Failed to find an OpenCL platform!\n");
 printf("Test failed\n");
 exit(1);
}

Devices
After a Xilinx platform is found, the application needs to identify the corresponding Xilinx
devices.

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 74Send Feedback

https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clGetPlatformIDs.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clGetPlatformInfo.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=74

The following code demonstrates finding all the Xilinx devices, with an upper limit of 16, by using
API clGetDeviceIDs.

cl_device_id devices[16]; // compute device id
char cl_device_name[1001];

err = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_ACCELERATOR,
 16, devices, &num_devices);

printf("INFO: Found %d devices\n", num_devices);

//iterate all devices to select the target device.
for (uint i=0; i<num_devices; i++) {
 err = clGetDeviceInfo(devices[i], CL_DEVICE_NAME, 1024, cl_device_name,
0);
 printf("CL_DEVICE_NAME %s\n", cl_device_name);
}

IMPORTANT! The clGetDeviceIDs  API is called with the platform_id  and
CL_DEVICE_TYPE_ACCELERATOR  to receive all the available Xilinx devices.

Sub-Devices

In the Vitis core development kit, sometimes devices contain multiple kernel instances of a single
kernel or of different kernels. While the OpenCL API clCreateSubDevices allows the host
code to divide a device into multiple sub-devices, the Vitis core development kit supports equally
divided sub-devices (using CL_DEVICE_PARTITION_EQUALLY), each containing one kernel
instance.

The following example shows:

1. Sub-devices created by equal partition to execute one kernel instance per sub-device.

2. Iterating over the sub-device list and using a separate context and command queue to
execute the kernel on each of them.

3. The API related to kernel execution (and corresponding buffer related) code is not shown for
the sake of simplicity, but would be described inside the function run_cu.

cl_uint num_devices = 0;
 cl_device_partition_property props[3] = {CL_DEVICE_PARTITION_EQUALLY,1,0};

 // Get the number of sub-devices
 clCreateSubDevices(device,props,0,nullptr,&num_devices);

 // Container to hold the sub-devices
 std::vector<cl_device_id> devices(num_devices);

 // Second call of clCreateSubDevices
 // We get sub-device handles in devices.data()
 clCreateSubDevices(device,props,num_devices,devices.data(),nullptr);

 // Iterating over sub-devices
 std::for_each(devices.begin(),devices.end(),[kernel](cl_device_id sdev) {

 // Context for sub-device

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 75Send Feedback

https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clGetDeviceIDs.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clCreateSubDevices.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=75

 auto context = clCreateContext(0,1,&sdev,nullptr,nullptr,&err);

 // Command-queue for sub-device
 auto queue = clCreateCommandQueue(context,sdev,
 CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE,&err);

 // Execute the kernel on the sub-device using local context and
 queue run_cu(context,queue,kernel); // Function not shown
 });

IMPORTANT! As shown in the example, you must create a separate context for each sub-device. Though
OpenCL supports a context that can hold multiple devices and sub-devices, XRT requires each device and
sub-device to have a separate context.

Context
The clCreateContext API is used to create a context that contains a Xilinx device that will
communicate with the host machine.

context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);

In the code example, the clCreateContext API is used to create a context that contains one
Xilinx device. Xilinx recommends creating only one context per device or sub-device. However,
the host program should use multiple contexts if sub-devices are used with one context for each
sub-device.

Command Queues
The clCreateCommandQueue API creates one or more command queues for each device. The
FPGA can contain multiple kernels, which can be either the same or different kernels. When
developing the host application, there are two main programming approaches to execute kernels
on a device:

1. Single out-of-order command queue: Multiple kernel executions can be requested through
the same command queue. XRT dispatches kernels as soon as possible, in any order, allowing
concurrent kernel execution on the FPGA.

2. Multiple in-order command queue: Each kernel execution will be requested from different in-
order command queues. In such cases, XRT dispatches kernels from the different command
queues, improving performance by running them concurrently on the device.

The following is an example of standard API calls to create in-order and out-of-order command
queues.

// Out-of-order Command queue
commands = clCreateCommandQueue(context, device_id,
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err);

// In-order Command Queue
commands = clCreateCommandQueue(context, device_id, 0, &err);

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 76Send Feedback

https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clCreateContext.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clCreateCommandQueue.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=76

Program
As described in Build Process, the host and kernel code are compiled separately to create
separate executable files: the host program executable and the FPGA binary (.xclbin). When
the host application runs, it must load the .xclbin file using the
clCreateProgramWithBinary API.

The following code example shows how the standard OpenCL API is used to build the program
from the .xclbin file.

unsigned char *kernelbinary;
char *xclbin = argv[1];

printf("INFO: loading xclbin %s\n", xclbin);

int size=load_file_to_memory(xclbin, (char **) &kernelbinary);
size_t size_var = size;

cl_program program = clCreateProgramWithBinary(context, 1, &device_id,
 &size_var,(const unsigned char **) &kernelbinary,
 &status, &err);

// Function
int load_file_to_memory(const char *filename, char **result)
{
 uint size = 0;
 FILE *f = fopen(filename, "rb");
 if (f == NULL) {
 *result = NULL;
 return -1; // -1 means file opening fail
 }
 fseek(f, 0, SEEK_END);
 size = ftell(f);
 fseek(f, 0, SEEK_SET);
 *result = (char *)malloc(size+1);
 if (size != fread(*result, sizeof(char), size, f)) {
 free(*result);
 return -2; // -2 means file reading fail
 }
 fclose(f);
 (*result)[size] = 0;
 return size;
}

The example performs the following steps:

1. The kernel binary file, .xclbin, is passed in from the command line argument, argv[1].

TIP: Passing the .xclbin  through a command line argument is one approach. You can also
hardcode the kernel binary file in the host program, define it with an environment variable, read it from
a custom initialization file, or another suitable mechanism.

2. The load_file_to_memory function is used to load the file contents in the host machine
memory space.

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 77Send Feedback

https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clCreateProgramWithBinary.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=77

3. The clCreateProgramWithBinary API is used to complete the program creation process
in the specified context and device.

Executing Commands in the FPGA
Once the OpenCL environment is initialized, the host application is ready to issue commands to
the device and interact with the kernels. These commands include:

1. Setting up the kernels.

2. Buffer transfer to/from the FPGA.

3. Kernel execution on FPGA.

4. Event synchronization.

Setting Up Kernels
After setting up the OpenCL environment, such as identifying devices, creating the context,
command queue, and program, the host application should identify the kernels that will execute
on the device, and set up the kernel arguments.

The OpenCL API clCreateKernel should be used to access the kernels contained within
the .xclbin file (the "program"). The cl_kernel object identifies a kernel in the program loaded
into the FPGA that can be run by the host application. The following code example identifies two
kernels defined in the loaded program.

kernel1 = clCreateKernel(program, "<kernel_name_1>", &err);
kernel2 = clCreateKernel(program, "<kernel_name_2>", &err); // etc

Setting Kernel Arguments

In the Vitis software platform, two types of arguments can be set for cl_kernel objects:

1. Scalar arguments are used for small data transfer, such as constant or configuration type data.
These are write-only arguments from the host application perspective, meaning they are
inputs to the kernel.

2. Memory buffer arguments are used for large data transfer. The value is a pointer to a memory
object created with the context associated with the program and kernel objects. These can be
inputs to, or outputs from the kernel.

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 78Send Feedback

https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clBuildProgram.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clCreateKernel.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=78

Kernel arguments can be set using the clSetKernelArg command, as shown in the following
example for setting kernel arguments for two scalar and two buffer arguments.

// Create memory buffers
cl_mem dev_buf1 = clCreateBuffer(context, CL_MEM_WRITE_ONLY |
CL_MEM_USE_HOST_PTR, size, &host_mem_ptr1, NULL);
cl_mem dev_buf2 = clCreateBuffer(context, CL_MEM_READ_ONLY |
CL_MEM_USE_HOST_PTR, size, &host_mem_ptr2, NULL);

int err = 0;
// Setup scalar arguments
cl_uint scalar_arg_image_width = 3840;
err |= clSetKernelArg(kernel, 0, sizeof(cl_uint), &scalar_arg_image_width);
cl_uint scalar_arg_image_height = 2160;
err |= clSetKernelArg(kernel, 1, sizeof(cl_uint),
&scalar_arg_image_height);

// Setup buffer arguments
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &dev_buf1);
err |= clSetKernelArg(kernel, 3, sizeof(cl_mem), &dev_buf2);

IMPORTANT! Although OpenCL allows setting kernel arguments any time before enqueuing the kernel,
you should set kernel arguments as early as possible. XRT will error out if you try to migrate a buffer before
XRT knows where to put it on the device. Therefore, set the kernel arguments before performing any
enqueue operation (for example, clEnqueueMigrateMemObjects) on any buffer.

Buffer Transfer to/from the FPGA
Interactions between the host program and hardware kernels rely on transferring data to and
from the global memory in the device. The method to send data back and forth from the FPGA is
using clCreateBuffer, clEnqueueWriteBuffer, and clEnqueueReadBuffer
commands.

RECOMMENDED: Xilinx recommends using clEnqueueMigrateMemObjects  instead of
clEnqueueReadBuffer  and clEnqueueWriteBuffer.

This method is demonstrated in the following code example.

int host_mem_ptr[MAX_LENGTH]; // host memory for input vector
// Fill the memory input
for(int i=0; i<MAX_LENGTH; i++) {
 host_mem_ptr[i] = <... >
}
cl_mem dev_mem_ptr = clCreateBuffer(context, CL_MEM_READ_WRITE |
CL_MEM_USE_HOST_PTR,
 sizeof(int) * number_of_words, NULL, NULL);

err = clEnqueueWriteBuffer(commands, dev_mem_ptr, CL_TRUE, 0,
 sizeof(int) * number_of_words, host_mem_ptr, 0, NULL, NULL);

IMPORTANT! A single buffer cannot be bigger than 4 GB, yet to maximize throughput from the host to
global memory, Xilinx also recommends keeping the buffer size at least 2 MB if possible.

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 79Send Feedback

https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clSetKernelArg.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clCreateBuffer.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clEnqueueWriteBuffer.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clEnqueueReadBuffer.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=79

For simple applications, the provided example code would be sufficient to transfer data from the
host to the device memory. However, there are a number of coding practices you should adopt to
maximize performance and fine-grain control.

The OpenCL API supports additional commands for reading and writing buffers. However, some
of these have different effects that must be understood when using them. For example,
clEnqueueReadBufferRect can read a rectangular region of a buffer object to the host
application, but it does not transfer the data from the device global memory to the host. You
must first use clEnqueueReadBuffer to transfer the data from the device global memory, and
then use clEnqueueReadBufferRect to read the desired rectangular portion into the host
application.

Using clEnqueueMigrateMemObjects

IMPORTANT! Using clEnqueueMigrateMemObjects  with CL_MEM_USE_HOST_PTR  is not
applicable to the embedded platform. Embedded platform users should use the clEnqueueMapBuffer 
method, as described in Using clEnqueueMapBuffer.

The OpenCL framework provides a number of APIs for transferring data between the host and
the device. Typically, data movement APIs, such as clEnqueueWriteBuffer and
clEnqueueReadBuffer, implicitly migrate memory objects to the device after they are
enqueued. They do not guarantee when the data is transferred, and this makes it difficult for the
host application to synchronize the movement of memory objects with the computation
performed on the data.

Xilinx recommends using clEnqueueMigrateMemObjects instead of
clEnqueueWriteBuffer or clEnqueueReadBuffer to improve the performance. Using this
API, memory migration can be explicitly performed ahead of the dependent commands. This
allows the host application to preemptively change the association of a memory object, through
regular command queue scheduling, to prepare for another upcoming command. This also
permits an application to overlap the placement of memory objects with other unrelated
operations before these memory objects are needed, potentially hiding or reducing data transfer
latencies. After the event associated with clEnqueueMigrateMemObjects has been marked
complete, the host program knows the memory objects have been successfully migrated.

There are two main parts of a cl_mem object: host side pointer and device side pointer. Before
the kernel starts its operation, the device side pointer is implicitly allocated on the device side
memory (for example, on a specific location inside the device global memory) and the buffer
becomes a resident on the device. However, by using clEnqueueMigrateMemObjects this
allocation and data transfer occur upfront, much ahead of the kernel execution. This especially
helps to enable software pipelining if the host is executing the same kernel multiple times,
because data transfer for the next transaction can happen when kernel is still operating on the
previous data set, and thus hide the data transfer latency of successive kernel executions.

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 80Send Feedback

https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clEnqueueReadBufferRect.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clEnqueueMigrateMemObjects.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=80

TIP: Another advantage of clEnqueueMigrateMemObjects  is that it can migrate multiple memory
objects in a single API call. This reduces the overhead of scheduling and calling functions to transfer data
for more than one memory object.

The following code shows the use of clEnqueueMigrateMemObjects:

int host_mem_ptr[MAX_LENGTH]; // host memory for input vector

// Fill the memory input
for(int i=0; i<MAX_LENGTH; i++) {
 host_mem_ptr[i] = <... >
}

cl_mem dev_mem_ptr = clCreateBuffer(context,
 CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR,
 sizeof(int) * number_of_words, host_mem_ptr, NULL);

clSetKernelArg(kernel, 0, sizeof(cl_mem), &dev_mem_ptr);

err = clEnqueueMigrateMemObjects(commands, 1, dev_mem_ptr, 0, 0,
 NULL, NULL);

Allocating Page-Aligned Host Memory

IMPORTANT! This topic is not applicable to the embedded platform. Embedded platform users should use
the clEnqueueMapBuffer  method, as described in Using clEnqueueMapBuffer.

XRT allocates memory space in 4K boundary for internal memory management. If the host
memory pointer is not aligned to a page boundary, XRT performs extra memcpy to make it
aligned. Hence you should align the host memory pointer with the 4K boundary to save the extra
memory copy operation.

The following is an example of how posix_memalign is used instead of malloc for the host
memory space pointer.

int *host_mem_ptr; // = (int*) malloc(MAX_LENGTH*sizeof(int));
// Aligning memory in 4K boundary
posix_memalign(&host_mem_ptr,4096,MAX_LENGTH*sizeof(int));

// Fill the memory input
for(int i=0; i<MAX_LENGTH; i++) {
 host_mem_ptr[i] = <... >
}

cl_mem dev_mem_ptr = clCreateBuffer(context,
 CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR,
 sizeof(int) * number_of_words, host_mem_ptr, NULL);

err = clEnqueueMigrateMemObjects(commands, 1, dev_mem_ptr, 0, 0,
 NULL, NULL);

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=81

Using clEnqueueMapBuffer

Another approach for creating and managing buffers is to use clEnqueueMapBuffer. With this
approach, it is not necessary to create a host space pointer aligned to the 4K boundary. The
clEnqueueMapBuffer API maps the specified buffer and returns a pointer created by XRT to
this mapped region. Then, fill the host side pointer with your data, followed by
clEnqueueMigrateMemObject to transfer the data to and from the device. The following
code example uses this style.

// Two cl_mem buffer, for read and write by kernel
cl_mem dev_mem_read_ptr = clCreateBuffer(context,
 CL_MEM_READ_ONLY,
 sizeof(int) * number_of_words, NULL, NULL);

cl_mem dev_mem_write_ptr = clCreateBuffer(context,
 CL_MEM_WRITE_ONLY,
 sizeof(int) * number_of_words, NULL, NULL);

// Setting arguments
clSetKernelArg(kernel, 0, sizeof(cl_mem), &dev_mem_read_ptr);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &dev_mem_write_ptr);

// Get Host side pointer of the cl_mem buffer object
auto host_write_ptr =
clEnqueueMapBuffer(queue,dev_mem_read_ptr,true,CL_MAP_WRITE,0,bytes,0,nullpt
r,nullptr,&err);
auto host_read_ptr =
clEnqueueMapBuffer(queue,dev_mem_write_ptr,true,CL_MAP_READ,0,bytes,0,nullpt
r,nullptr,&err);

// Fill up the host_write_ptr to send the data to the FPGA

for(int i=0; i< MAX; i++) {
 host_write_ptr[i] = <.... >
}

// Migrate
cl_mem mems[2] = {host_write_ptr,host_read_ptr};
clEnqueueMigrateMemObjects(queue,2,mems,0,0,nullptr,&migrate_event));

// Schedule the kernel
clEnqueueTask(queue,kernel,1,&migrate_event,&enqueue_event);

// Migrate data back to host
clEnqueueMigrateMemObjects(queue, 1, &dev_mem_write_ptr,
 CL_MIGRATE_MEM_OBJECT_HOST,1,&enqueue_event,
&data_read_event);

clWaitForEvents(1,&data_read_event);

// Now use the data from the host_read_ptr

To work with an example using clEnqueueMapBuffer, refer to Data Transfer (C) in the Vitis
Examples GitHub repository.

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 82Send Feedback

https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clEnqueueMapBuffer.html
https://github.com/Xilinx/Vitis_Accel_Examples/tree/master/host/data_transfer
https://github.com/Xilinx/Vitis_Accel_Examples
https://github.com/Xilinx/Vitis_Accel_Examples
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=82

Buffer Allocation on the Device

By default, all the memory interfaces from all the kernels are connected to a single default global
memory bank when kernels are linked. As a result, only one compute unit (CU) can transfer data
to and from the global memory bank at a time, limiting the overall performance of the
application. If the FPGA contains only one global memory bank, then this is the only option.
However, if the device contains multiple global memory banks, you can customize the global
memory bank connections by modifying the default connection during kernel linking. This topic is
discussed in greater detail in Mapping Kernel Ports to Global Memory. Overall performance is
improved by using separate memory banks for different kernels or compute units, enabling
multiple kernel memory interfaces to concurrently read and write data.

IMPORTANT! XRT must detect the kernel's memory connection to send data from the host program to
the correct memory location for the kernel. XRT will automatically find the buffer location from the kernel
binary files if clSetKernelArgs  is used before any enqueue operation on the buffer, for example
clEnqueueMigrateMemObject.

Sub-Buffers

Though not very common, using sub-buffers can be very useful in specific situations. The
following sections discuss the scenarios where using sub-buffers can be beneficial.

Reading a Specific Portion from the Device Buffer

Consider a kernel that produces different amounts of data depending on the input to the kernel.
For example, a compression engine where the output size varies depending on the input data
pattern and similarity. The host can still read the whole output buffer by using
clEnqueueMigrateMemObjects, but that is a suboptimal approach as more than the required
memory transfer would occur. Ideally the host program should only read the exact amount of
data that the kernel has written.

One technique is to have the kernel write the amount of the output data at the start of writing
the output data. The host application can use clEnqueueReadBuffer two times, first to read
the amount of data being returned, and second to read exact amount of data returned by the
kernel based on the information from the first read.

clEnqueueReadBuffer(command_queue,device_write_ptr, CL_FALSE, 0,
sizeof(int) * 1,
 &kernel_write_size, 0, nullptr, &size_read_event);
clEnqueueReadBuffer(command_queue,device_write_ptr, CL_FALSE,
DATA_READ_OFFSET,
 kernel_write_size, host_ptr, 1, &size_read_event,
&data_read_event);

With clEnqueueMigrateMemObject, which is recommended over clEnqueueReadBuffer
or clEnqueueWriteBuffer, you can adopt a similar approach by using sub-buffers. This is
shown in the following code sample.

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=83

TIP: The code sample shows only partial commands to demonstrate the concept.

//Create a small sub-buffer to read the quantity of data
cl_buffer_region buffer_info_1={0,1*sizeof(int)};
cl_mem size_info = clCreateSubBuffer (device_write_ptr, CL_MEM_WRITE_ONLY,
 CL_BUFFER_CREATE_TYPE_REGION, &buffer_info_1, &err);

// Map the sub-buffer into the host space
auto size_info_host_ptr = clEnqueueMapBuffer(queue, size_info,,,,);

// Read only the sub-buffer portion
clEnqueueMigrateMemObjects(queue, 1, &size_info,
CL_MIGRATE_MEM_OBJECT_HOST,,,);

// Retrive size information from the already mapped size_info_host_ptr
kernel_write_size =

// Create sub-buffer to read the required amount of data
cl_buffer_region buffer_info_2={DATA_READ_OFFSET, kernel_write_size};
cl_mem buffer_seg = clCreateSubBuffer (device_write_ptr,
CL_MEM_WRITE_ONLY,
 CL_BUFFER_CREATE_TYPE_REGION, &buffer_info_2,&err);

// Map the subbuffer into the host space
auto read_mem_host_ptr = clEnqueueMapBuffer(queue, buffer_seg,,,);

// Migrate the subbuffer
clEnqueueMigrateMemObjects(queue, 1, &buffer_seg,
CL_MIGRATE_MEM_OBJECT_HOST,,,);

// Now use the read data from already mapped read_mem_host_ptr

Device Buffer Shared by Multiple Memory Ports or Multiple Kernels

Sometimes memory ports of kernels only require small amounts of data. However, managing
small sized buffers, transferring small amounts of data, may have potential performance issues
for your application. Alternatively, your host program can create a larger size buffer, divided into
smaller sub-buffers. Each sub-buffer is assigned as a kernel argument as discussed in Setting
Kernel Arguments, for each of those memory ports requiring small amounts of data.

Once sub-buffers are created they are used in the host code similar to regular buffers. This can
improve performance as XRT handles a large buffer in a single transaction, instead of several
small buffers and multiple transactions.

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=84

Kernel Execution
Often the compute intensive task required by the host application can be defined inside a single
kernel, and the kernel is executed only once to work on the entire data range. Because there is an
overhead associated with multiple kernel executions, invoking a single monolithic kernel can
improve performance. Though the kernel is executed only one time, and works on the entire
range of the data, the parallelism (and thereby acceleration) is achieved on the FPGA inside the
kernel hardware. If properly coded, the kernel is capable of achieving parallelism by various
techniques such as instruction-level parallelism (loop pipeline) and function-level parallelism
(dataflow). These different kernel coding techniques are discussed in C/C++ Kernels.

When the kernel is compiled to a single hardware instance (or CU) on the FPGA, the simplest
method of executing the kernel is using clEnqueueTask as shown below.

err = clEnqueueTask(commands, kernel, 0, NULL, NULL);

XRT schedules the workload, or the data passed through OpenCL buffers from the kernel
arguments, and schedules the kernel tasks to run on the accelerator on the Xilinx FPGA.

IMPORTANT! Though using clEnqueueNDRangeKernel  is supported (only for OpenCL kernel), Xilinx
recommends using clEnqueueTask.

However, sometimes using a single clEnqueueTask to run the kernel is not always feasible due to
various reasons. For example, the kernel code can become too big and complex to optimize if it
attempts to perform all compute intensive tasks in a single execution. Another possible case is
when the host is receiving data over time and not all the data can be processed at one time.
Therefore, depending on the situation and application, you may need to break the data and the
task of the kernel into multiple clEnqueueTask commands as discussed in the next sections.

The following topics discuss various methods you can use to run a kernel, run multiple kernels, or
run multiple instances of the same kernel on the accelerator.

Task Parallelism Using Different Kernels

Sometimes the compute intensive task required by the host application can be broken into
multiple, different kernels designed to perform different tasks on the FPGA in parallel. By using
multiple clEnqueueTask commands in an out-of-order command queue, for example, you can
have multiple kernels performing different tasks, running in parallel. This enables the task
parallelism on the FPGA.

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 85Send Feedback

https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clEnqueueTask.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=85

Spatial Data Parallelism: Increase Number of Compute Units

Sometimes the compute intensive task required by the host application can process the data
across multiple hardware instances of the same kernel, or compute units (CUs) to achieve data
parallelism on the FPGA. If a single kernel has been compiled into multiple CUs, the
clEnqueueTask command can be called multiple times in an out-of-order command queue, to
enable data parallelism. Each call of clEnqueueTask would schedule a workload of data in
different CUs, working in parallel.

Temporal Data Parallelism: Host-to-Kernel Dataflow

Sometimes, the data processed by a compute unit passes from one stage of processing in the
kernel, to the next stage of processing. In this case, the first stage of the kernel may be free to
begin processing a new set of data. In essence, like a factory assembly line, the kernel can accept
new data while the original data moves down the line.

To understand this approach, assume a kernel has only one CU on the FPGA, and the host
application enqueues the kernel multiple times with different sets of data. As shown in Using
clEnqueueMigrateMemObjects, the host application can migrate data to the device global
memory ahead of the kernel execution, thus hiding the data transfer latency by the kernel
execution, enabling software pipelining.

However, by default, a kernel can only start processing a new set of data only when it has
finished processing the current set of data. Although clEnqueueMigrateMemObject hides
the data transfer time, multiple kernel executions still remain sequential.

By enabling host-to-kernel dataflow, it is possible to further improve the performance of the
accelerator by restarting the kernel with a new set of data while the kernel is still processing the
previous set of data. As discussed in Enabling Host-to-Kernel Dataflow, the kernel must
implement the ap_ctrl_chain interface, and must be written to permit processing data in
stages. In this case, XRT restarts the kernel as soon as it is able to accept new data, thus
overlapping multiple kernel executions. However, the host program must keep the command
queue filled with requests so that the kernel can restart as soon as it is ready to accept new data.

The following is a conceptual diagram for host-to-kernel dataflow.

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=86

Figure 20: Host to Kernel Dataflow

Host

Command Queue

D4 D3

Kernel

D2 D1 D0

Host to Kernel Dataflow

D0: Data set from the 1st clEnqueueTask
D1: Data set from the 2nd clEnqueueTask
D2: Data set from the 3rd clEnqueueTask
D3: Data set from the 4th clEnqueueTask (pending)
D4: Data set from the 5th clEnqueueTask (pending)

X22774-042519

The longer the kernel takes to process a set of data from start to finish, the greater the
opportunity to use host-to-kernel dataflow to improve performance. Rather than waiting until
the kernel has finished processing one set of data, simply wait until the kernel is ready to begin
processing the next set of data. This allows temporal parallelism, where different stages of the
same kernel processes a different set of data from multiple clEnqueueTask commands, in a
pipelined manner.

For advanced designs, you can effectively use both the spatial parallelism with multiple CUs to
process data, combined with temporal parallelism using host-to-kernel dataflow, overlapping
kernel executions on each compute unit.

IMPORTANT! Embedded processor platforms do not support the host-to-kernel dataflow feature.

Enabling Host-to-Kernel Dataflow

If a kernel is capable of accepting more data while it is still operating on data from the previous
transactions, XRT can send the next batch of data. The kernel then works on multiple data sets in
parallel at different stages of the algorithm, thus improving performance. To support host-to-
kernel dataflow, the kernel has to implement the ap_ctrl_chain protocol using the pragma
HLS interface for the function return:

void kernel_name(int *inputs,
 ...)// Other input or Output ports
{
#pragma HLS INTERFACE // Other interface pragmas
#pragma HLS INTERFACE ap_ctrl_chain port=return bundle=control

IMPORTANT! To take advantage of the host-to-kernel dataflow, the kernel must also be written to
process data in stages, such as pipelined at the loop-level as discussed in Loop Pipelining , or pipelined at
the task-level as discussed in Dataflow Optimization.

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 87Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=jit1504034365862
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=jit1504034365862
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=87

Symmetrical and Asymmetrical Compute Units

As discussed in Creating Multiple Instances of a Kernel, multiple compute units (CUs) of a single
kernel can be instantiated on the FPGA during the kernel linking process. CUs can be considered
symmetrical or asymmetrical with regard to other CUs of the same kernel.

• Symmetrical: CUs are considered symmetrical when they have exactly the same
connectivity.sp options, and therefore have identical connections to global memory. As a
result, the Xilinx Runtime can use them interchangeably. A call to clEnqueueTask can result
in the invocation of any instance in a group of symmetrical CUs.

• Asymmetrical: CUs are considered asymmetrical when they do not have exactly the same
connectivity.sp options, and therefore do not have identical connections to global
memory. Using the same setup of input and output buffers, it is not possible for XRT to
execute asymmetrical CUs interchangeably.

Kernel Handle and Compute Units

The first time clSetKernelArg is called for a given kernel object, XRT identifies the group of
symmetrical CUs for subsequent executions of the kernel. When clEnqueueTask is called for
that kernel, any of the symmetrical CUs in that group can be used to process the task.

If all CUs for a given kernel are symmetrical, a single kernel object is sufficient to access any of
the CUs. However, if there are asymmetrical CUs, the host application will need to create a
unique kernel object for each group of asymmetrical CUs. In this case, the call to
clEnqueueTask must specify the kernel object to use for the task, and any matching CU for
that kernel can be used by XRT.

Creating Kernel Objects for Specific Compute Units

For creating kernels associated with specific compute units, the clCreateKernel command
supports specifying the CUs at the time the kernel object is created by the host program. The
syntax of this command is shown below:

// Create kernel object only for a specific compute unit
cl_kernel kernelA = clCreateKernel(program,"<kernel_name>:
{compute_unit_name}",&err);
// Create a kernel object for two specific compute units
cl_kernel kernelB = clCreateKernel(program, "<kernel_name>:{CU1,CU2}",
&err);

IMPORTANT! As discussed in Creating Multiple Instances of a Kernel, the number of CUs is specified by
the connectivity.nk  option in a config file used by the v++  command during linking. Therefore,
whatever is specified in the host program, to create or enqueue kernel objects, must match the options
specified by the config file used during linking.

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=88

In this case, the Xilinx Runtime identifies the kernel handles (kernelA, kernelB) for specific
CUs, or group of CUs, when the kernel is created. This lets you control which kernel
configuration, or specific CU instance is used, when using clEnqueueTask from within the host
program. This can be useful in the case of asymmetrical CUs, or to perform load and priority
management of CUs.

Using Compute Unit Name to Get Handle of All Asymmetrical Compute Units

If a kernel instantiates multiple CUs that are not symmetrical, the clCreateKernel command
can be specified with CU names to create different CU groups. In this case, the host program can
reference a specific CU group by using the cl_kernel handle returned by clCreateKernel.

In the following example, the kernel mykernel has five CUs: K1, K2, K3, K4, and K5. The K1, K2,
and K3 CUs are a symmetrical group, having symmetrical connection on the device. Similarly,
CUs K4 and K5 form a second symmetrical CU group. The following code segment shows how to
address a specific CU group using cl_kernel handles.

// Kernel handle for Symmetrical compute unit group 1: K1,K2,K3
cl_kernel kernelA = clCreateKernel(program,"mykernel:{K1,K2,K3}",&err);

for(i=0; i<3; i++) {
 // Creating buffers for the kernel_handle1

 // Setting kernel arguments for kernel_handle1

 // Enqueue buffers for the kernel_handle1

 // Possible candidates of the executions K1,K2 or K3
 clEnqueueTask(commands, kernelA, 0, NULL, NULL);
 //
}

// Kernel handle for Symmetrical compute unit group 1: K4, K5
cl_kernel kernelB = clCreateKernel(program,"mykernel:{K4,K5}",&err);

for(int i=0; i<2; i++) {
 // Creating buffers for the kernel_handle2

 // Setting kernel arguments for kernel_handle2

 // Enqueue buffers for the kernel_handle2

 // Possible candidates of the executions K4 or K5
 clEnqueueTask(commands, kernelB, 0, NULL, NULL);
}

Event Synchronization
All OpenCL enqueue-based API calls are asynchronous. These commands will return immediately
after the command is enqueued in the command queue. To pause the host program to wait for
results, or resolve any dependencies among the commands, an API call such as clFinish or
clWaitForEvents can be used to block execution of the host program.

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 89Send Feedback

https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clFinish.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clWaitForEvents.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=89

The following code shows examples for clFinish and clWaitForEvents.

err = clEnqueueTask(command_queue, kernel, 0, NULL, NULL);
// Execution will wait here until all commands in the command queue are
finished
clFinish(command_queue);

// Create event, read memory from device, wait for read to complete, verify
results
cl_event readevent;
// host memory for output vector
int host_mem_output_ptr[MAX_LENGTH];
//Enqueue ReadBuffer, with associated event object
clEnqueueReadBuffer(command_queue, dev_mem_ptr, CL_TRUE, 0, sizeof(int) *
number_of_words,
 host_mem_output_ptr, 0, NULL, &readevent);
// Wait for clEnqueueReadBuffer event to finish
clWaitForEvents(1, &readevent);
// After read is complete, verify results
...

Note how the commands have been used in the example above:

1. The clFinish API has been explicitly used to block the host execution until the kernel
execution is finished. This is necessary otherwise the host can attempt to read back from the
FPGA buffer too early and may read garbage data.

2. The data transfer from FPGA memory to the local host machine is done through
clEnqueueReadBuffer. Here the last argument of clEnqueueReadBuffer returns an
event object that identifies this particular read command, and can be used to query the
event, or wait for this particular command to complete. The clWaitForEvents command
specifies a single event (the readevent), and waits to ensure the data transfer is finished
before verifying the data.

Post-Processing and FPGA Cleanup
At the end of the host code, all the allocated resources should be released by using proper
release functions. If the resources are not properly released, the Vitis core development kit might
not able to generate a correct performance related profile and analysis report.

clReleaseCommandQueue(Command_Queue);
clReleaseContext(Context);
clReleaseDevice(Target_Device_ID);
clReleaseKernel(Kernel);
clReleaseProgram(Program);
free(Platform_IDs);
free(Device_IDs);

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=90

Summary
As discussed in earlier topics, the recommended coding style for the host program in the Vitis
core development kit includes the following points:

1. Add error checking after each OpenCL API call for debugging purpose, if required.

2. In the Vitis core development kit, one or more kernels are separately compiled/linked to build
the .xclbin file. The API clCreateProgramWithBinary is used to build the cl_program
object from the kernel binary.

3. Use buffer for setting the kernel argument (clSetKernelArg) before any enqueue
operation on the buffer.

4. Transfer data back and forth from the host code to the kernel by using
clEnqueueMigrateMemObjects or clEnqueueMapBuffer.

5. Use posix_memalign to align the host memory pointer at 4K boundary (applicable for
PCIe-based platforms).

6. Preferably use the out-of-order command queue for concurrent command execution on the
FPGA.

7. Execute the whole workload with clEnqueueTask, rather than splitting the workload by
using clEnqueueNDRangeKernel.

8. Use event synchronization commands, clFinish and clWaitForEvents, to resolve
dependencies of the asynchronous OpenCL API calls.

9. Release all OpenCL allocated resources when finished.

Section II: Developing Applications
Chapter 6: Host Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=91

Chapter 7

C/C++ Kernels
In the Vitis core development kit, the kernel code is generally a compute-intensive part of the
algorithm and meant to be accelerated on the FPGA. The Vitis core development kit supports the
kernel code written in C/C++, OpenCL, and also in RTL. This guide mainly focuses on the C
kernel coding style.

During the runtime, the C/C++ kernel executable is called through the host code executable.

IMPORTANT! Because the host code and the kernel code are developed and compiled independently,
there could be a name mangling issue if one is written in C and the other in C++. To avoid this issue, wrap
the kernel function declaration with the extern "C"  linkage in the header file, or wrap the whole
function in the kernel code.

extern "C" {
 void kernel_function(int *in, int *out, int size);
 }

Data Types
As it is faster to write and verify the code by using native C data types such as int, float, or
double, it is a common practice to use these data types when coding for the first time.
However, the code is implemented in hardware and all the operator sizes used in the hardware
are dependent on the data types used in the accelerator code. The default native C/C++ data
types can result in larger and slower hardware resources that can limit the performance of the
kernel. Instead, consider using bit-accurate data types to ensure the code is optimized for
implementation in hardware. Using bit-accurate, or arbitrary precision data types, results in
hardware operators which are smaller and faster. This allows more logic to be placed into the
programmable logic and also allows the logic to execute at higher clock frequencies while using
less power.

Consider using bit-accurate data types instead of native C/C++ data types in your code.

RECOMMENDED: Consider using bit-accurate data types instead of native C/C++ data types in your
code.

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=92

In the following sections, the two most common arbitrary precision data types (arbitrary
precision integer type and arbitrary precision fixed-point type) supported by the Vitis compiler
are discussed.

Note: These data types should be used for C/C++ kernels only, not for OpenCL kernel (or inside the host
code)

Arbitrary Precision Integer Types
Arbitrary precision integer data types are defined by ap_int or ap_uint for signed and
unsigned integer respectively inside the header file ap_int.h. To use arbitrary precision integer
data type:

• Add header file ap_int.h to the source code.

• Change the bit types to ap_int<N> or ap_uint<N>, where N is a bit-size from 1 to 1024.

The following example shows how the header file is added and the two variables are
implemented to use 9-bit integer and 10-bit unsigned integer.

#include "ap_int.h"
ap_int<9> var1 // 9 bit signed integer
ap_uint<10> var2 // 10 bit unsigned integer

Arbitrary Precision Fixed-Point Data Types
Some existing applications use floating point data types as they are written for other hardware
architectures. However, fixed-point data types are a useful replacement for floating point types
which require many clock cycles to complete. When choosing to implement floating-point versus
fixed-point arithmetic for your application and accelerators, carefully evaluate trade-offs in
power, cost, productivity, and precision.

As discussed in Reduce Power and Cost by Converting from Floating Point to Fixed Point (WP491),
using fixed-point arithmetic instead of floating point for applications can increase power
efficiency, and lower the total power required. Unless the entire range of the floating-point type
is required, the same accuracy can often be implemented with a fixed-point type, resulting in the
same accuracy with smaller and faster hardware.

Fixed-point data types model the data as an integer and fraction bits. The fixed-point data type
requires the ap_fixed header, and supports both a signed and unsigned form as follows:

• Header file: ap_fixed.h

• Signed fixed point: ap_fixed<W,I,Q,O,N>

• Unsigned fixed point: ap_ufixed<W,I,Q,O,N>

• W = Total width < 1024 bits

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 93Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp491-floating-to-fixed-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=93

• I = Integer bit width. The value of I must be less than or equal to the width (W). The number of
bits to represent the fractional part is W minus I. Only a constant integer expression can be
used to specify the integer width.

• Q = Quantization mode. Only predefined enumerated values can be used to specify Q. The
accepted values are:

○ AP_RND: Rounding to plus infinity.

○ AP_RND_ZERO: Rounding to zero.

○ AP_RND_MIN_INF: Rounding to minus infinity.

○ AP_RND_INF: Rounding to infinity.

○ AP_RND_CONV: Convergent rounding.

○ AP_TRN: Truncation. This is the default value when Q is not specified.

○ AP_TRN_ZERO: Truncation to zero.

• O = Overflow mode. Only predefined enumerated values can be used to specify O. The
accepted values are:

○ AP_SAT: Saturation.

○ AP_SAT_ZERO: Saturation to zero.

○ AP_SAT_SYM: Symmetrical saturation.

○ AP_WRAP: Wrap-around. This is the default value when O is not specified.

○ AP_WRAP_SM: Sign magnitude wrap-around.

• N = The number of saturation bits in the overflow WRAP modes. Only a constant integer
expression can be used as the parameter value. The default value is zero.

In the example code below, the ap_fixed type is used to define a signed 18-bit variable with 6
bits representing the integer value above the binary point, and by implication, 12 bits
representing the fractional value below the binary point. The quantization mode is set to round
to plus infinity (AP_RND). Because the overflow mode and saturation bits are not specified, the
defaults AP_WRAP and 0 are used.

#include <ap_fixed.h>
...
 ap_fixed<18,6,AP_RND> my_type;
...

When performing calculations where the variables have different numbers of bits (W), or
different precision (I), the binary point is automatically aligned. For more information on using
fixed-point data types, see C++ Arbitrary Precision Fixed-Point Types in the Vitis HLS User Guide
(UG1399).

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=94

Interfaces
Two types of data transfer occur from the host machine to and from the kernels on the FPGA.
Data pointers are transferred between the host CPU and the accelerator through global memory
banks. Scalar data is passed directly from the host to the kernel.

The Vitis HLS tool, which is part of the Vitis core development kit, automatically assigns interface
ports for the parameters of your C/C++ kernel function. These port assignments are made during
the v++ compilation process. The following sections provide additional details of these interface
ports, and your ability to manually assign them, or override the default assignments using the
INTERFACE pragma. If there are no user-defined INTERFACE pragmas in the code, then the
following interface protocols are assigned by the Vitis tool:

• AXI4 Master interfaces (m_axi) are assigned to pointer arguments of the C/C++ function.

• AXI4-Lite interfaces (s_axilite) are assigned to scalar arguments, control signals for arrays,
global variables, and the return value of the software function.

• Vitis HLS automatically infers BURST transactions to aggregate memory accesses to maximize
the throughput bandwidth and/or minimize the latency. For more information on burst
transfers, refer to Optimizing Burst Transfers in the Vitis HLS Flow.

• When hls::stream is used to define a parameter type, the Vitis HLS tool infers an axis
streaming interface.

Memory Mapped Interfaces
Memory mapped interfaces are inferred from pointer parameters. They allow kernels to read and
write data in global memory, which is the memory that is shared between kernels and the host
application. Therefore, memory mapped interfaces are a convenient way of sharing data across
different elements of the accelerated application, but interfaces are only allowed for sequential
and pipelined kernel execution modes as described in Kernel Execution Modes.

To customize the default interfaces assigned by the Vitis tools during compilation, you can use
the INTERFACE pragma. For optimal performance, Xilinx recommends performing burst
transfers, if possible up to the AXI protocol limit of 4 KB per transfer.

Kernel Interfaces

void cnn(int *pixel, // Input pixel
 int *weights, // Input Weight Matrix
 int *out, // Output pixel
 ... // Other input or Output ports

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 95Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=programmingvitishls.html;a=ddw1586913493144
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=95

In the example above, the kernel function has three pointer parameters: pixel, weights, and
out. By default the Vitis compiler will map these three parameters to the same AXI4 interface
(m_axi).

The default interface mapping inferred by the compiler is equivalent to the following INTERFACE
pragmas:

#pragma HLS INTERFACE m_axi port=pixel offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=weights offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=out offset=slave bundle=gmem

TIP: The inferred pragma is not added to the code by the tool; it is shown here to represent the default
settings assigned to the interface port.

The bundle keyword on the INTERFACE pragma defines the name of the port. The system
compiler will create a port for each unique bundle name, resulting in a compiled kernel object
(.xo) that has a single AXI interface, m_axi_gmem. When the same bundle name is used for
different interfaces, this results in these interfaces being mapped to same port.

TIP: The gmem  name is short for global memory; however, it is not a keyword and is just used for
consistency. You can assign your own names for the bundles.

Sharing ports helps save FPGA resources by eliminating AXI interfaces, but it can limit the
performance of the kernel because all the memory transfers have to go through a single port. The
m_axi port has independent READ and WRITE channels, so with a single m_axi port, you can
do reads and writes simultaneously. However, the bandwidth and throughput of the kernel can
be increased by creating multiple ports, using different bundle names, to connect to multiple
memory banks. There are many options for configuring the INTERFACE, as described in pragma
HLS interface. Some reasons to manually define an INTERFACE pragma in your code could
include:

• Specifying the bundle for the INTERFACE pragma to separate AXI signals into separate
bundles.

• Specifying the interface width to deviate from default int = 64 bytes (512-bits).

• Specifying AXI properties for BURST transactions.

void cnn(int *pixel, // Input pixel
 int *weights, // Input Weight Matrix
 int *out, // Output pixel
 ... // Other input or Output ports

#pragma HLS INTERFACE m_axi port=pixel offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=weights offset=slave bundle=gmem1
#pragma HLS INTERFACE m_axi port=out offset=slave bundle=gmem

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 96Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=jit1504034365862
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=jit1504034365862
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=96

In the example above, two bundle names create two distinct ports: gmem and gmem1. The
kernel will access pixel and out data through the gmem port, while weights data will be
accessed through the gmem1 port. As a result, the kernel will be able to make parallel accesses to
pixel and weights, potentially improving the throughput of the kernel.

IMPORTANT! Specify bundle=  names using all lowercase characters, so you can assign it to a specific
memory bank using the connectivity.sp  option.

The INTERFACE pragma is used during v++ compilation, resulting in a compiled kernel object
(.xo) with two separate AXI interfaces, m_axi_gmem and m_axi_gmem1, that can be connected
to global memory as needed. During system compiler linking, the separate interfaces can be
mapped to different global memory banks using the connectivity.sp option in a
configuration file, as described in Mapping Kernel Ports to Global Memory.

Memory Interface Width Considerations

The maximum data width from the global memory to and from the kernel is 512-bits. To
maximize the data transfer rate, it is recommended that you use this full data width. By default in
the Vitis kernel flow, the Vitis HLS tool automatically re-sizes the kernel interface ports up to
512-bits to improve burst access. For more information, refer to Automatic Port Width Resizing
in the Vitis HLS Flow.

There are some pros and cons to using the automatic port width resizing feature which you
should consider when using this feature:

• Improves the read latency from memory as the tool is reading a big vector, instead of the data
type size.

• Adds resources as it needs to buffer the big vector, and shift the data to the data path size.

• Automatic port width resizing supports only standard C data types and does not support non-
aggregate types such as ap_int, ap_uint, struct, or array.

TIP: You can disable automatic port widening, and manually size the kernel port if needed.

Reading and Writing by Burst

Accessing the global memory bank interface from the kernel has a large latency, so global
memory transfer should be done in burst. To infer the burst, the following pipelined loop coding
style is recommended.

hls::stream<datatype_t> str;

INPUT_READ: for(int i=0; i<INPUT_SIZE; i++) {
 #pragma HLS PIPELINE
 str.write(inp[i]); // Reading from Input interface
}

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 97Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=programmingvitishls.html;a=ooe1589518299593
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=97

In the code example, a pipelined for loop is used to read data from the input memory interface,
and writes to an internal hls::stream variable. The above coding style reads from the global
memory bank in burst.

It is a recommended coding style to implement the for loop operation in the example above
inside a separate function, and apply the dataflow optimization, as discussed in Dataflow
Optimization. The code example below shows how this would look, letting the compiler establish
dataflow between the read, execute, and write functions:

top_function(datatype_t * m_in, // Memory data Input
 datatype_t * m_out, // Memory data Output
 int inp1, // Other Input
 int inp2) { // Other Input
#pragma HLS DATAFLOW

hls::stream<datatype_t> in_var1; // Internal stream to transfer
hls::stream<datatype_t> out_var1; // data through the dataflow region

read_function(m_in, inp1, in_var1); // Read function contains pipelined for
loop
 // to infer burst

execute_function(in_var1, out_var1, inp1, inp2); // Core compute function

write_function(out_var1, m_out); // Write function contains pipelined for
loop
 // to infer burst
}

For more information on burst transfers, refer to Optimizing Burst Transfers in the Vitis HLS Flow.

Scalar Inputs
Scalar inputs are typically control variables that are directly loaded from the host machine. They
can be thought of as programming data or parameters under which the main kernel computation
takes place. These kernel inputs are write-only from the host side. In the following function, the
scalar parameters are width and height.

void process_image(int *input, int *output, int width, int height) {

The scalar arguments are assigned a default INTERFACE pragma, which is inferred by the tool.

#pragma HLS INTERFACE s_axilite port=width bundle=control
#pragma HLS INTERFACE s_axilite port=height bundle=control

In this example, there are two scalar inputs that specify the image width and height. These
data inputs come to the kernel directly from the host machine and not through global memory
banks. The pragmas shown are not added to the code by the tool.

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 98Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=programmingvitishls.html;a=ddw1586913493144
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=98

IMPORTANT! Currently, the Vitis core development kit supports only one control interface bundle for
each kernel. Therefore, the bundle=  name should be same for all scalar data inputs and the function
return . In the preceding example, bundle=control  is used for all scalar inputs.

Streaming Interfaces
If the data is accessed sequentially, a streaming interface can be used. This interface enables
direct streaming of data from the host to kernel, and from the kernel to host without the need to
migrate the data through the global memory as an intermediate step. The streaming interface can
also be used between two kernels where one kernel is streaming data as a producer to another
kernel acting as a consumer. This transfer also occurs directly and without making use of global
memory. For more information, refer to Streaming Data Transfers.

Process Execution Modes
As discussed in Kernel Execution Modes, there are three types of execution modes. These modes
are determined by block protocols assigned to the kernels on the function return. The block
protocol can be assigned using #pragma HLS INTERFACE. The modes and block protocol to
enable them are listed below:

• Pipeline: Enabled by the default block protocol of ap_ctrl_chain

• Sequential: Serial access mode enabled by ap_ctrl_hs

• Free-Running: Enabled by ap_ctrl_none

For more information on how XRT supports these execution modes, refer to Supported Kernel
Execution Models.

Pipeline Mode

If a kernel can accept more data while it is still operating on data from previous transactions, XRT
can send the next batch of data as described in Temporal Data Parallelism: Host-to-Kernel
Dataflow. Pipeline mode lets the kernel overlap multiple kernel enqueues, which improves the
overall throughput.

To support pipeline mode, the kernel has to use the ap_ctrl_chain protocol, the default
protocol used by HLS. This protocol can also be enabled by assigning the #pragma HLS
INTERFACE to the function return as shown in the following example.

void kernel_name(int *inputs,
 ...)// Other input or Output ports
{
#pragma HLS INTERFACE // Other interface pragmas
#pragma HLS INTERFACE ap_ctrl_chain port=return bundle=control

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 99Send Feedback

https://xilinx.github.io/XRT/2019.2/html/xrt_kernel_executions.html
https://xilinx.github.io/XRT/2019.2/html/xrt_kernel_executions.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=99

For pipeline mode to be successful, the kernel should have a longer latency for the queue of the
kernel, or else there would be insufficient time for the kernel to process each batch of data, and
you would not see the benefit of the pipeline.

IMPORTANT! To take advantage of the host-to-kernel dataflow, the kernel must also be written to
process data in stages, such as pipelined at the loop-level, as discussed in Loop Pipelining , or pipelined at
the task-level, as discussed in Dataflow Optimization.

For legacy reasons, the kernel also supports sequential mode that can be configured using the
ap_ctrl_hs block protocol for the function return in the #pragma HLS INTERFACE. If a
pipelined kernel is unable to process data in a pipelined manner, it reverts to sequential mode.

Free-Running Mode

By default Vitis HLS generates a kernel with synchronization controlled by the host application.
The host controls and monitors the start and end of the kernel. However, in some cases the
kernel does not need to be controlled by the host, such as in a continuously running process or
data stream. This is called a free running kernel, as it is free of any control handshake. The Vitis
tool supports this using the ap_ctrl_none block protocol in the #pragma HLS INTERFACE
as shown in the following example.

void kernel_top(hls::stream<ap_axiu >& input, hls::stream<ap_axiu >&
output)
{
#pragma HLS interface axis port=input
#pragma HLS interface axis port=output
#pragma HLS interface ap_ctrl_none port=return // Special pragma for Free
running kernel
#pragma HLS DATAFLOW
// The kernel is using DATAFLOW optimization
while(1) { ... }
}

The kernel will run only when there is data available at the input if configured using the AXI4-
Stream interface. Otherwise the kernel stalls and waits for more data. For additional details, refer
to Streaming Data Transfers.

Loops
Loops are an important aspect for a high performance accelerator. Generally, loops are either
pipelined or unrolled to take advantage of the highly distributed and parallel FPGA architecture
to provide a performance boost compared to running on a CPU.

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=100

By default, loops are neither pipelined nor unrolled. Each iteration of the loop takes at least one
clock cycle to execute in hardware. Thinking from the hardware perspective, there is an implicit
wait until clock for the loop body. The next iteration of a loop only starts when the previous
iteration is finished.

Loop Pipelining
By default, every iteration of a loop only starts when the previous iteration has finished. In the
loop example below, a single iteration of the loop adds two variables and stores the result in a
third variable. Assume that in hardware this loop takes three cycles to finish one iteration. Also,
assume that the loop variable len is 20, that is, the vadd loop runs for 20 iterations in the
kernel. Therefore, it requires a total of 60 clock cycles (20 iterations * 3 cycles) to complete all
the operations of this loop.

vadd: for(int i = 0; i < len; i++) {
 c[i] = a[i] + b[i];
}

TIP: It is good practice to always label a loop as shown in the above code example (vadd:… ). This practice
helps with debugging when working in the Vitis core development kit. Note that the labels generate
warnings during compilation, which can be safely ignored.

Pipelining the loop executes subsequent iterations in a pipelined manner. This means that
subsequent iterations of the loop overlap and run concurrently, executing at different sections of
the loop-body. Pipelining a loop can be enabled by the pragma HLS pipeline. Note that the
pragma is placed inside the body of the loop.

vadd: for(int i = 0; i < len; i++) {
 #pragma HLS PIPELINE
 c[i] = a[i] + b[i];
}

In the example above, it is assumed that every iteration of the loop takes three cycles: read, add,
and write. Without pipelining, each successive iteration of the loop starts in every third cycle.
With pipelining the loop can start subsequent iterations of the loop in fewer than three cycles,
such as in every second cycle, or in every cycle.

The number of cycles it takes to start the next iteration of a loop is called the initiation interval
(II) of the pipelined loop. So II = 2 means each successive iteration of the loop starts every two
cycles. An II = 1 is the ideal case, where each iteration of the loop starts in the very next cycle.
When you use pragma HLS PIPELINE, the compiler always tries to achieve II = 1
performance.

The following figure illustrates the difference in execution between pipelined and non-pipelined
loops. In this figure, (A) shows the default sequential operation where there are three clock cycles
between each input read (II = 3), and it requires eight clock cycles before the last output write is
performed.

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 101Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=fde1504034360078
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=101

Figure 21: Loop Pipelining

void func(m,n,o) {
 for (i=2;i>=0;i--) {
 op_Read;
 op_Compute;
 op_Write;

 }
}

4 cycles

RD

3 cycles

8 cycles

1 cycle
RD CMP WR

RD CMP WR

RD CMP WR

(A) Without Loop Pipelining (B) With Loop Pipelining X14277-082818

CMP WR RD CMP WR RD CMP WR

In the pipelined version of the loop shown in (B), a new input sample is read every cycle (II = 1)
and the final output is written after only four clock cycles: substantially improving both the II and
latency while using the same hardware resources.

IMPORTANT! Pipelining a loop causes any loops nested inside the pipelined loop to get unrolled.

If there are data dependencies inside a loop, as discussed in Loop Dependencies, it might not be
possible to achieve II = 1, and a larger initiation interval might be the result.

Loop Unrolling
The compiler can also unroll a loop, either partially or completely to perform multiple loop
iterations in parallel. This is done using the pragma HLS unroll. Unrolling a loop can lead to a very
fast design, with significant parallelism. However, because all the operations of the loop
iterations are executed in parallel, a large amount of programmable logic resource are required to
implement the hardware. As a result, the compiler can face challenges dealing with such a large
number of resources and can face capacity problems that slow down the kernel compilation
process. It is a good guideline to unroll loops that have a small loop body, or a small number of
iterations.

vadd: for(int i = 0; i < 20; i++) {
 #pragma HLS UNROLL
 c[i] = a[i] + b[i];
}

In the preceding example, you can see pragma HLS UNROLL has been inserted into the body of
the loop to instruct the compiler to unroll the loop completely. All 20 iterations of the loop are
executed in parallel if that is permitted by any data dependency.

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 102Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=uyd1504034366571
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=102

TIP: Completely unrolling a loop can consume significant device resources, while partially unrolling the
loop provides some performance improvement while using fewer hardware resources.

Partially Unrolled Loop

To completely unroll a loop, the loop must have a constant bound (20 in the example above).
However, partial unrolling is possible for loops with a variable bound. A partially unrolled loop
means that only a certain number of loop iterations can be executed in parallel.

The following code examples illustrates how partially unrolled loops work:

array_sum:for(int i=0;i<4;i++){
 #pragma HLS UNROLL factor=2
 sum += arr[i];
}

In the above example the UNROLL pragma is given a factor of 2. This is the equivalent of
manually duplicating the loop body and running the two loops concurrently for half as many
iterations. The following code shows how this would be written. This transformation allows two
iterations of the above loop to execute in parallel.

array_sum_unrolled:for(int i=0;i<4;i+=2){
 // Manual unroll by a factor 2
 sum += arr[i];
 sum += arr[i+1];
}

Just like data dependencies inside a loop impact the initiation interval of a pipelined loop, an
unrolled loop performs operations in parallel only if data dependencies allow it. If operations in
one iteration of the loop require the result from a previous iteration, they cannot execute in
parallel, but execute as soon as the data from one iteration is available to the next.

RECOMMENDED: A good methodology is to PIPELINE  loops first, and then UNROLL  loops with small
loop bodies and limited iterations to improve performance further.

Loop Dependencies
Data dependencies in loops can impact the results of loop pipelining or unrolling. These loop
dependencies can be within a single iteration of a loop or between different iterations of a loop.
The straightforward method to understand loop dependencies is to examine an extreme
example. In the following code example, the result of the loop is used as the loop continuation or
exit condition. Each iteration of the loop must finish before the next can start.

Minim_Loop: while (a != b) {
 if (a > b)
 a -= b;
 else
 b -= a;
}

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=103

This loop cannot be pipelined. The next iteration of the loop cannot begin until the previous
iteration ends.

Dealing with various types of dependencies with the Vitis compiler is an extensive topic requiring
a detailed understanding of the high-level synthesis procedures underlying the compiler. For
more information, refer to "Dependencies with Vitis HLS" in Vitis HLS User Guide (UG1399).

Nested Loops
Coding with nested loops is a common practice. Understanding how loops are pipelined in a
nested loop structure is key to achieving the desired performance.

If the HLS PIPELINE pragma is applied to a loop nested inside another loop, the v++ compiler
attempts to flatten the loops to create a single loop, and apply the PIPELINE pragma to the
constructed loop. The loop flattening helps in improving the performance of the kernel.

The compiler is able to flatten the following types of nested loops:

1. Perfect nested loop:

• Only the inner loop has a loop body.

• There is no logic or operations specified between the loop declarations.

• All the loop bounds are constant.

2. Semi-perfect nested loop:

• Only the inner loop has a loop body.

• There is no logic or operations specified between the loop declarations.

• The inner loop bound must be a constant, but the outer loop bound can be a variable.

The following code example illustrates the structure of a perfect nested loop:

ROW_LOOP: for(int i=0; i< MAX_HEIGHT; i++) {
 COL_LOOP: For(int j=0; j< MAX_WIDTH; j++) {
 #pragma HLS PIPELINE
 // Main computation per pixel
 }
}

The above example shows a nested loop structure with two loops that performs some
computation on incoming pixel data. In most cases, you want to process a pixel in every cycle,
hence, PIPELINE is applied to the nested loop body structure. The compiler is able to flatten the
nested loop structure in the example because it is a perfect nested loop.

The nested loop in the preceding example contains no logic between the two loop declarations.
No logic is placed between the ROW_LOOP and COL_LOOP; all of the processing logic is inside the
COL_LOOP. Also, both the loops have a fixed number of iterations. These two criteria help the v+
+ compiler flatten the loops and apply the PIPELINE constraint.

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=104

RECOMMENDED: If the outer loop has a variable boundary, then the compiler can still flatten the loop.
You should always try to have a constant boundary for the inner loop.

Sequential Loops
If there are multiple loops in the design, by default they do not overlap, and execute sequentially.
This section introduces the concept of dataflow optimization for sequential loops. Consider the
following code example:

void adder(unsigned int *in, unsigned int *out, int inc, int size) {

 unsigned int in_internal[MAX_SIZE];
 unsigned int out_internal[MAX_SIZE];
 mem_rd: for (int i = 0 ; i < size ; i++){
 #pragma HLS PIPELINE
 // Reading from the input vector "in" and saving to internal variable
 in_internal[i] = in[i];
 }
 compute: for (int i=0; i<size; i++) {
 #pragma HLS PIPELINE
 out_internal[i] = in_internal[i] + inc;
 }

 mem_wr: for(int i=0; i<size; i++) {
 #pragma HLS PIPELINE
 out[i] = out_internal[i];
 }
}

In the previous example, three sequential loops are shown: mem_rd, compute, and mem_wr.

• The mem_rd loop reads input vector data from the memory interface and stores it in internal
storage.

• The main compute loop reads from the internal storage and performs an increment operation
and saves the result to another internal storage.

• The mem_wr loop writes the data back to memory from the internal storage.

This code example is using two separate loops for reading and writing from/to the memory
input/output interfaces to infer burst read/write.

By default, these loops are executed sequentially without any overlap. First, the mem_rd loop
finishes reading all the input data before the compute loop starts its operation. Similarly, the
compute loop finishes processing the data before the mem_wr loop starts to write the data.
However, the execution of these loops can be overlapped, allowing the compute (or mem_wr)
loop to start as soon as there is enough data available to feed its operation, before the mem_rd
(or compute) loop has finished processing its data.

The loop execution can be overlapped using dataflow optimization as described in Dataflow
Optimization.

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=105

Dataflow Optimization
Dataflow optimization is a powerful technique to improve the kernel performance by enabling
task-level pipelining and parallelism inside the kernel. It allows the v++ compiler to schedule
multiple functions of the kernel to run concurrently to achieve higher throughput and lower
latency. This is also known as task-level parallelism.

The following figure shows a conceptual view of dataflow pipelining. The default behavior is to
execute and complete func_A, then func_B, and finally func_C. With the pragma HLS
dataflow enabled, the compiler can schedule each function to execute as soon as data is
available. In this example, the original top function has a latency and interval of eight clock
cycles. With the dataflow optimization, the interval is reduced to only three clock cycles.

Figure 22: Dataflow Optimization

void top (a,b,c,d) {
 ...
 func_A(a,b,i1);
 func_B(c,i1,i2);
 func_C(i2,d)

 return d;
}

func_A
func_B
func_C

8 cycles

func_A func_B func_C

8 cycles

3 cycles

func_A
func_B

func_C

func_A
func_B

func_C

5 cycles

(A) Without Dataflow Pipelining (B) With Dataflow Pipelining
X14266-083118

Dataflow Coding Example
In the dataflow coding example you should notice the following:

1. The pragma HLS dataflow is applied to instruct the compiler to enable dataflow optimization.
This is not a data mover, which deals with interfacing between the PS and PL, but instead
addresses how the data flows through the accelerator.

2. The stream class is used as a data transferring channel between each of the functions in the
dataflow region.

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 106Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=zof1504034359187
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=zof1504034359187
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=zof1504034359187
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=106

TIP: The stream  class infers a first-in first-out (FIFO) memory circuit in the programmable logic. This
memory circuit, which acts as a queue in software programming, provides data-level synchronization
between the functions and achieves better performance.

void compute_kernel(ap_int<256> *inx, ap_int<256> *outx, DTYPE alpha) {
 hls::stream<unsigned int>inFifo;
 #pragma HLS STREAM variable=inFifo depth=32
 hls::stream<unsigned int>outFifo;
 #pragma HLS STREAM variable=outFifo depth=32

 #pragma HLS DATAFLOW
 read_data(inx, inFifo);
 // Do computation with the acquired data
 compute(inFifo, outFifo, alpha);
 write_data(outx, outFifo);
 return;
}

Canonical Forms of Dataflow Optimization
Xilinx recommends writing the code inside a dataflow region using canonical forms. There are
canonical forms for dataflow optimizations for both functions and loops.

• Functions: The canonical form coding guideline for dataflow inside a function specifies:

1. Use only the following types of variables inside the dataflow region:

a. Local non-static scalar/array/pointer variables.

b. Local static hls::stream variables.

2. Function calls transfer data only in the forward direction.

3. Array or hls::stream should have only one producer function and one consumer
function.

4. The function arguments (variables coming from outside the dataflow region) should only
be read, or written, not both. If performing both read and write on the same function
argument then read should happen before write.

5. The local variables (those that are transferring data in forward direction) should be written
before being read.

The following code example illustrates the canonical form for dataflow within a function. Note
that the first function (func1) reads the inputs and the last function (func3) writes the
outputs. Also note that one function creates output values that are passed to the next
function as input parameters.

void dataflow(Input0, Input1, Output0, Output1) {
 UserDataType C0, C1, C2;
 #pragma HLS DATAFLOW
 func1(read Input0, read Input1, write C0, write C1);
 func2(read C0, read C1, write C2);
 func3(read C2, write Output0, write Output1);
}

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=107

• Loop: The canonical form coding guideline for dataflow inside a loop body includes the coding
guidelines for a function defined above, and also specifies the following:

1. Initial value 0.

2. The loop condition is formed by a comparison of the loop variable with a numerical
constant or variable that does not vary inside the loop body.

3. Increment by 1.

The following code example illustrates the canonical form for dataflow within a loop.

void dataflow(Input0, Input1, Output0, Output1) {
 UserDataType C0, C1, C2;
 for (int i = 0; i < N; ++i) {
 #pragma HLS DATAFLOW
 func1(read Input0, read Input1, write C0, write C1);
 func2(read C0, read C0, read C1, write C2);
 func3(read C2, write Output0, write Output1);
 }
}

Troubleshooting Dataflow
The following behaviors can prevent the Vitis compiler from performing dataflow optimizations:

1. Single producer-consumer violations.

2. Bypassing tasks.

3. Feedback between tasks.

4. Conditional execution of tasks.

5. Loops with multiple exit conditions or conditions defined within the loop.

If any of the above conditions occur inside the dataflow region, you might need to re-architect
your code to successfully achieve dataflow optimization.

Array Configuration
The Vitis compiler maps large arrays to the block RAM memory in the PL region. These block
RAM can have a maximum of two access points or ports. This can limit the performance of the
application as all the elements of an array cannot be accessed in parallel when implemented in
hardware.

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=108

Depending on the performance requirements, you might need to access some or all of the
elements of an array in the same clock cycle. To achieve this, the pragma HLS array_partition can
be used to instruct the compiler to split the elements of an array and map it to smaller arrays, or
to individual registers. The compiler provides three types of array partitioning, as shown in the
following figure. The three types of partitioning are:

• block: The original array is split into equally sized blocks of consecutive elements of the
original array.

• cyclic: The original array is split into equally sized blocks interleaving the elements of the
original array.

• complete: Split the array into its individual elements. This corresponds to resolving a
memory into individual registers. This is the default for the ARRAY_PARTITION pragma.

Figure 23: Partitioning Arrays

0 1 2 ... N-3 N-2 N-1

0 1 ... (N/2-1)

N/2 ... N-2 N-1

0 2 ... N-2

1 ... N-3 N-1

0
N-3

N-11
N-2

... 2

block

cyclic

complete

X14251-082418

For block and cyclic partitioning, the factor option specifies the number of arrays that are
created. In the preceding figure, a factor of 2 is used to split the array into two smaller arrays. If
the number of elements in the array is not an integer multiple of the factor, the later arrays will
have fewer elements.

When partitioning multi-dimensional arrays, the dimension option is used to specify which
dimension is partitioned. The following figure shows how the dimension option is used to
partition the following example code in three different ways:

void foo (...) {
 // my_array[dim=1][dim=2][dim=3]
 // The following three pragma results are shown in the figure below
 // #pragma HLS ARRAY_PARTITION variable=my_array dim=3 <block|cyclic>
factor=2
 // #pragma HLS ARRAY_PARTITION variable=my_array dim=1 <block|cyclic>

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 109Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=gle1504034361378
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=109

factor=2
 // #pragma HLS ARRAY_PARTITION variable=my_array dim=0 complete
 int my_array[10][6][4];
 ...
}

Figure 24: Partitioning the Dimensions of an Array

my_array_0[10][6]
my_array_1[10][6]
my_array_2[10][6]
my_array_3[10][6]

my_array_0[6][4]
my_array_1[6][4]
my_array_2[6][4]
my_array_3[6][4]
my_array_4[6][4]
my_array_5[6][4]
my_array_6[6][4]
my_array_7[6][4]
my_array_8[6][4]
my_array_9[6][4]

my_array[10][6][4] partition dimension 3

my_array[10][6][4] partition dimension 1

my_array[10][6][4] partition dimension 0 10x6x4 = 240 elements
X14304-102219

The examples in the figure demonstrate how partitioning dimension 3 results in four separate
arrays and partitioning dimension 1 results in 10 separate arrays. If 0 is specified as the
dimension, all dimensions are partitioned.

The Importance of Careful Partitioning

A complete partition of the array maps all the array elements to the individual registers. This
helps in improving the kernel performance because all of these registers can be accessed
concurrently in a same cycle.

CAUTION! Complete partitioning of the large arrays consumes a lot of PL region. It could even cause the
compilation process to slow down and face capacity issue. Partition the array only when it is needed.
Consider selectively partitioning a particular dimension or performing a block or cycle partitioning.

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=110

Choosing a Specific Dimension to Partition

Suppose A and B are two-dimensional arrays representing two matrices. Consider the following
Matrix Multiplication algorithm:

int A[64][64];
int B[64][64];

ROW_WISE: for (int i = 0; i < 64; i++) {
 COL_WISE : for (int j = 0; j < 64; j++) {
 #pragma HLS PIPELINE
 int result = 0;
 COMPUTE_LOOP: for (int k = 0; k < 64; k++) {
 result += A[i][k] * B[k][j];
 }
 C[i][j] = result;
 }
}

Due to the PIPELINE pragma, the ROW_WISE and COL_WISE loop is flattened together and
COMPUTE_LOOP is fully unrolled. To concurrently execute each iteration (k) of the
COMPUTE_LOOP, the code must access each column of matrix A and each row of matrix B in
parallel. Therefore, the matrix A should be split in the second dimension, and matrix B should be
split in the first dimension.

#pragma HLS ARRAY_PARTITION variable=A dim=2 complete
#pragma HLS ARRAY_PARTITION variable=B dim=1 complete

Choosing Between Cyclic and Block Partitions

Here the same matrix multiplication algorithm is used to demonstrate choosing between cyclic
and block partitioning and determining the appropriate factor, by understanding the array access
pattern of the underlying algorithm.

int A[64 * 64];
int B[64 * 64];
#pragma HLS ARRAY_PARTITION variable=A dim=1 cyclic factor=64
#pragma HLS ARRAY_PARTITION variable=B dim=1 block factor=64

ROW_WISE: for (int i = 0; i < 64; i++) {
 COL_WISE : for (int j = 0; j < 64; j++) {
 #pragma HLS PIPELINE
 int result = 0;
 COMPUTE_LOOP: for (int k = 0; k < 64; k++) {
 result += A[i * 64 + k] * B[k * 64 + j];
 }
 C[i* 64 + j] = result;
 }
}

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=111

In this version of the code, A and B are now one-dimensional arrays. To access each column of
matrix A and each row of matrix B in parallel, cyclic and block partitions are used as shown in the
above example. To access each column of matrix A in parallel, cyclic partitioning is applied
with the factor specified as the row size, in this case 64. Similarly, to access each row of matrix
B in parallel, block partitioning is applied with the factor specified as the column size, or 64.

Minimizing Array Accesses with Caching

As arrays are mapped to block RAM with limited number of access ports, repeated array accesses
can limit the performance of the accelerator. You should have a good understanding of the array
access pattern of the algorithm, and limit the array accesses by locally caching the data to
improve the performance of the kernel.

The following code example shows a case in which accesses to an array can limit performance in
the final implementation. In this example, there are three accesses to the array mem[N] to create
a summed result.

#include "array_mem_bottleneck.h"
dout_t array_mem_bottleneck(din_t mem[N]) {
 dout_t sum=0;
 int i;
 SUM_LOOP:for(i=2;i<N;++i)
 sum += mem[i] + mem[i-1] + mem[i-2];
 return sum;
}

The code in the preceding example can be rewritten as shown in the following example to allow
the code to be pipelined with a II = 1. By performing pre-reads and manually pipelining the data
accesses, there is only one array read specified inside each iteration of the loop. This ensures that
only a single-port block RAM is needed to achieve the performance.

#include "array_mem_perform.h"
dout_t array_mem_perform(din_t mem[N]) {
 din_t tmp0, tmp1, tmp2;
 dout_t sum=0;
 int i;
 tmp0 = mem[0];
 tmp1 = mem[1];
 SUM_LOOP:for (i = 2; i < N; i++) {
 tmp2 = mem[i];
 sum += tmp2 + tmp1 + tmp0;
 tmp0 = tmp1;
 tmp1 = tmp2;
 }
 return sum;
}

RECOMMENDED: Consider minimizing the array access by caching to local registers to improve the
pipelining performance depending on the algorithm.

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=112

Function Inlining
C code generally consists of several functions. By default, each function is compiled, and
optimized separately by the Vitis compiler. A unique hardware module will be generated for the
function body and reused as needed.

From a performance perspective, in general it is better to inline the function, or dissolve the
function hierarchy. This helps Vitis compiler to perform optimization more globally across the
function boundary. For example, if a function is called inside a pipelined loop, then inlining the
function helps the compiler to do more aggressive optimization and results in a better pipeline
performance of the loop (lower initiation interval or II number).

The following INLINE pragma placed inside the function body instruct the compiler to inline the
function.

foo_sub (p, q) {
 #pragma HLS INLINE

 ...
}

However, if the function body is very big and called several times inside the main kernel function,
then inlining the function may cause capacity issues due to consuming too many resources. In
cases like that you might not inline such functions, and let the v++ compiler optimize the
function separately in its local context.

Summary
As discussed in earlier topics, several important aspects of coding the kernel for FPGA
acceleration using C/C++ include the following points:

1. Consider using arbitrary precision data types, ap_int, and ap_fixed.

2. Understand kernel interfaces to determine scalar and memory interfaces. Use bundle switch
with different names if separate DDR memory banks will be specified in the linking stage.

3. Use Burst read and write coding style from and to the memory interface.

4. Consider exploiting the full width of DDR banks during the data transfer when selecting
width of memory data inputs and outputs.

5. Get the greatest performance boost using pipelining and dataflow.

6. Write perfect or semi-perfect nested loop structure so that the v++ compiler can flatten and
apply pipeline effectively.

7. Unroll loops with a small number of iterations and low operation count inside the loop body.

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=113

8. Consider understanding the array access pattern and apply complete partition to specific
dimensions or apply block or cyclic partitioning instead of a complete partition of the
whole array.

9. Minimize the array access by using local cache to improve kernel performance.

10. Consider inlining the function, specifically inside the pipelined region. Functions inside the
dataflow should not be inlined.

Section II: Developing Applications
Chapter 7: C/C++ Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=114

Chapter 8

RTL Kernels
As mentioned in FPGA Binary Build Process, each hardware kernel in the Vitis core development
kit is independently compiled to a Xilinx object (.xo) file. These files can be combined into
application projects for linking into the FPGA executable (xclbin). This includes the ability to
package existing RTL IP from the Vivado Design Suite for use in the Vitis application acceleration
development flow.

Many hardware engineers have existing RTL IP (including Vivado® IP integrator based designs),
or prefer implementing a kernel in RTL and developing it using the Vivado tools. While the Vitis
core development kit supports the use of packaged RTL designs, they must adhere to the
software and hardware requirements to be used within the accelerated application development
flow and runtime library.

Requirements of an RTL Kernel
An RTL design must meet both interface and software requirements to be used as an RTL kernel
within the Vitis IDE.

It might be necessary to add or modify the original RTL design to meet these requirements,
which are outlined in the following sections.

Kernel Interface Requirements
To satisfy the Vitis core development kit execution model, an RTL kernel must adhere to the
requirements described in Kernel Properties. The RTL kernel must have at least one clock
interface port to supply a clock to the kernel logic. The various interface requirements are
summarized in the following table.

IMPORTANT! In some cases, the port names must be written exactly as shown.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=115

Table 5: RTL Kernel Interface and Port Requirements

Port or
Interface Description Comment

ap_clk Primary clock input port • Name must be exact.
• Required port.

ap_clk_2 Secondary optional clock input port
• Name must be exact.
• Optional port.

ap_rst_n Primary active-Low reset input port

• Name must be exact.
• Optional port.
• This signal should be internally pipelined to improve

timing.
• This signal is driven by a synchronous reset in the

ap_clk clock domain.

ap_rst_n_2 secondary optional active-Low reset input

• Name must be exact.
• Optional port.
• This signal should be internally pipelined to improve

timing.
• This signal is driven by a synchronous reset in the

ap_clk_2 clock domain.

interrupt Active-High interrupt. • Name must be exact.
• Optional port.

s_axi_control One (and only one) AXI4-Lite slave control
interface

• Name must be exact; case sensitive.
• Required port.

AXI4_MASTER One or more AXI4 master interfaces for
global memory access

• All AXI4 master interfaces must have 64-bit addresses.
• The RTL kernel developer is responsible for partitioning

global memory spaces. Each partition in the global
memory becomes a kernel argument. The memory
offset for each partition must be set by a control
register programmable via the AXI4-Lite slave interface.

• AXI4 masters must not use Wrap or Fixed burst types
and must not use narrow (sub-size) bursts meaning
AxSIZE should match the width of the AXI data bus.

• Any user logic or RTL code that does not conform to
the requirements above, must be wrapped or bridged
to satisfy these requirements.

Kernel Software Requirements
RTL kernels have the same software interface model as C/C++ and OpenCL kernels. They are
seen by the host program as functions with a void return value, pointer arguments, and scalar
arguments.

The Vitis core development kit execution model dictates the following:

• Scalar arguments are directly written to the kernel through the AXI4-Lite slave interface.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=116

• Pointer arguments are transferred from the host program to/from memory, and the RTL kernel
reads/writes the data in memory through one or more AXI4 memory mapped interfaces.

• Kernels are controlled by the host program through the control register (shown below)
through the AXI4-Lite slave interface.

If the RTL design has a different execution model, it must be adapted to ensure that it will
operate in this manner.

The following table outlines the required register map such that a kernel can be used within the
Vitis IDE. The control register is required by all kernels while the interrupt related registers are
only required for designs with interrupts. All user-defined registers must begin at location 0x10;
locations below this are reserved.

Table 6: Address Map

Address Name Description
0x0 Control Controls and provides kernel status.

0x4 Global Interrupt Enable Used to enable interrupt to the host.

0x8 IP Interrupt Enable Used to control which IP generated signal are used to generate an
interrupt.

0xC IP Interrupt Status Provides interrupt status.

0x10 Kernel arguments This would include scalars and global memory arguments for instance.

Table 7: Control (0x0)

Bit Name Description
0 ap_start Asserted when kernel can start processing data. Cleared on handshake with ap_done

being asserted.

1 ap_done Asserted when kernel has completed operation. Cleared on read.

2 ap_idle Asserted when kernel is idle.

31:3 Reserved Reserved

Note: The host typically writes to 0x00000001 to the offset 0 control register which sets Bit 0, clears Bits
1 and 2, and polls on reading done signal until it is a 1.

The following interrupt related registers are only required if the kernel has an interrupt.

Table 8: Global Interrupt Enable (0x4)

Bit Name Description
0 Global Interrupt

Enable
When asserted, along with the IP Interrupt Enable bit, the interrupt is enabled.

31:1 Reserved Reserved

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=117

Table 9: IP Interrupt Enable (0x8)

Bit Name Description
0 Interrupt Enable When asserted, along with the Global Interrupt Enable bit, the interrupt is enabled.

31:1 Reserved Reserved

Table 10: IP Interrupt Status (0xC)

Bit Name Description
0 Interrupt Status Toggle on write.

31:1 Reserved Reserved

Interrupt
RTL kernels can optionally have an interrupt port containing a single interrupt. The port name
must be called interrupt and be active-High. It is enabled when both the global interrupt
enable (GIE) and interrupt enable register (IER) bits are asserted.

By default, the IER uses the internal ap_done signal to trigger an interrupt. Further, the interrupt
is cleared only when writing a one to bit-0 of the IP Interrupt Status Register.

If adding an interrupt port to the RTL kernel, the kernel.xml file needs to include this
information. The kernel.xml, located in the kernel.xo file, is generated automatically when
using the package_xo command, or RTL Kernel Wizard. By default, the kernel uses a single
interrupt port, interrupt, along with the interrupt logic in the Control Register block. This is
reflected in the generated Verilog code for the RTL kernel, and the associated component.xml
and kernel.xml files.

RTL Kernel Development Flow
This section explains the two-step process for creating RTL kernels for the Vitis core
development kit, which includes:

1. Package the RTL block as a standard Vivado IP.

2. Package the RTL kernel into a Xilinx Object (.xo) file.

A packaged RTL kernel is delivered as an.xo file extension. This file is a container encapsulating
the Vivado IP object (including source files) and associated kernel XML file. The .xo file can be
combined with other kernels, and linked with the target platform and built for hardware or
hardware emulation flows.

TIP: An RTL kernel is not suited for software emulation unless you provide a C-model for the kernel.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=118

Package the RTL Code as a Vivado IP
RTL kernels must be packaged as a Vivado IP that can be used with the IP integrator. For details
on IP packaging in the Vivado tool, see the Vivado Design Suite User Guide: Creating and Packaging
Custom IP (UG1118).

The following required interfaces for the RTL kernel must be packaged:

• The AXI4-Lite interface name must be packaged as S_AXI_CONTROL, but the underlying AXI
ports can be named differently.

• The AXI4 interfaces must be packaged as AXI4 master endpoints with 64-bit address support.

RECOMMENDED: Xilinx strongly recommends that AXI4 interfaces be packaged with AXI meta data
HAS_BURST=0  and SUPPORTS_NARROW_BURST=0 . These properties can be set in an IP-level
bd.tcl  file. This indicates wrap and fixed burst type is not used, and narrow (sub-size burst) is not
used.

• ap_clk and ap_clk_2 must be packaged as clock interfaces (ap_clk_2 is only required
when the RTL kernel has two clocks).

• ap_rst_n and ap_rst_n_2 must be packaged as active-Low reset interfaces (when the RTL
kernel has a reset).

• ap_clk must be associated with all AXI4-Lite, AXI4, and AXI4-Stream interfaces, if used, the
ap_rst_n signal.

To package the IP, use the following steps:

1. Create and package a new IP.

a. From a Vivado project, with your RTL source files added, select Tools → Create and
Package New IP.

b. Select Package your current project, and click Next.

You can select the default location for your IP, or choose a different location.

c. To open the Package IP window, select Finish.

2. Associate the clock to the AXI interfaces.

In the Ports and Interfaces section of the Package IP window, you can associate the ap_clk
with the AXI4 interfaces, and reset signal if needed.

a. Right-click an interface, and select Associate Clocks.

This opens the Associate Clocks dialog box which lists the ap_clk, and perhaps
ap_clk_2.

b. Select the ap_clk and click OK to associate it with the interface.

c. Make sure to repeat this step to associate ap_clk with each of the AXI interfaces, and
the reset.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 119Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=119

3. Add FREQ_HZ to ap_clk.

a. In the Ports and Interfaces section, right-click the ap_clk port and select Edit Interface to
open the Edit Interface dialog box as shown in the following figure.

b. Select the FREQ_HZ parameter on the left-side of the dialog box, as shown, and select
the arrow (→) to move it from left to right.

c. You can also define the value for the FREQ_HZ parameter by scrolling the right side of
the dialog box, and entering 250000000 in the Value field, for example, because the
parameter is specified in Hz.

d. Click OK to add the parameter.

e. The RTL kernel also requires the value_resolve_type property on the FREQ_HZ
parameter to define how the tool should resolve value conflicts. You must specify a value
of user for the property using the following Tcl command:

set_property value_resolve_type user [ipx::get_bus_parameters -of
[::ipx::get_bus_interfaces -of [ipx::current_core] *clk*] "

4. Add the control registers and offsets.

The kernel requires control registers as discussed in Kernel Software Requirements. The
following table shows a list of the required registers.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=120

Table 11: Address Map

Register Name Description Address
Offset Size

CTRL Control Signals.

IMPORTANT! The CTRL register and
<kernel_args> are required on all kernels. The
interrupt related registers are only required for
designs with interrupts.

0x000 32

GIER Global Interrupt Enable Register. Used to enable
interrupt to the host.

0x004 32

IP_IER IP Interrupt Enable Register. Used to control which IP
generated signal are used to generate an interrupt.

0x008 32

IP_ISR IP Interrupt Status Register. Provides interrupt
status.

0x00C 32

<kernel_args> This includes a separate entry for each kernel
argument as needed on the software function
interface. All user-defined registers must begin at
location 0x10; locations below this are reserved.

0x010 32/64
Scalar arguments are 32.bits
wide.

m_axi

interfaces are 64 bits wide.

a. To create the address map described in the table, select the Addressing and Memory
section of the Package IP window. Right-click in the Address Blocks and select the Add
Register command.

This opens the Add Register dialog box in which you can enter one of the register names
from the table above.

b. Repeat as needed to add all required registers.

This creates a Registers table in the Addressing and Memory section. You can edit the
table to add the Description, Address Offset, and Size to each register. The Registers
table should look similar to the following example.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=121

c. Finally, select the register for each of the pointer arguments from your table, right-click
and select the Add Register Parameter command. Enter the name ASSOCIATED_BUSIF
into the dialog box that opens, and click OK.

This lets you define an association between the register and the AXI4 Interface. In the
value field of the added parameter, enter the name of the m_axi interface assigned to
the specific argument you are defining. In the example above, the argument A uses the
m00_axi interface, and the argument B uses the m01_axi interface.

5. Add required properties to the IP:

The IP requires a few standard properties that you can add to your core. The easiest way to
do this is by using the following commands from the Vivado Tcl Console.

set core [ipx::current_core]
set_property xpm_libraries {XPM_CDC XPM_MEMORY XPM_FIFO} $core
set_property sdx_kernel true $core
set_property sdx_kernel_type rtl $core

6. At this point you are ready to package your IP.

a. Select the Review and Package section of the Package IP window, review the Summary
and After Packaging sections, and make whatever changes are needed.

IMPORTANT! You must enable the generation of an IP archive file. If the After Packaging section
indicates An archive will not be generated. you must select the Edit packaging settings link and
enable the Create archive of IP setting.

b. When you are ready, click Package IP.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=122

The Vivado tool packages your kernel IP and opens a dialog box to inform you of success.
You can go on to package the kernel using the package_xo command, as described in
Creating the .xo File from the RTL Kernel.

7. To test if the RTL kernel is packaged correctly for the IP integrator, try to instantiate the
packaged kernel IP into a block design in the IP integrator. For information on the tool, refer
to Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994).

8. The kernel IP should show the various interfaces described above. Examine the IP in the
canvas view. The properties of the AXI interface can be viewed by selecting the interface on
the canvas. Then in theBlock Interface Properties window, select the Properties tab and
expand the CONFIG table entry. If an interface is to be read-only or write-only, the unused
AXI channels can be removed and the READ_WRITE_MODE is set to read-only or write-only.

9. If the RTL kernel has constraints which refer to constraints in the static area such as clocks,
then the RTL kernel constraint file needs to be marked as late processing order to ensure RTL
kernel constraints are correctly applied.

There are two methods to mark constraints as late processing order:

a. If the constraints are given in a .ttcl file, add <: setFileProcessingOrder
"late" :> to the .ttcl preamble section of the file as follows:

<: set ComponentName [getComponentNameString] :>
<: setOutputDirectory "./" :>
<: setFileName $ComponentName :>
<: setFileExtension ".xdc" :>
<: setFileProcessingOrder "late" :>

b. If constraints are defined in an .xdc file, then add the following four lines starting at
<spirit:define> in the component.xml. The four lines in the component.xml
need to be next to the area where the .xdc file is called. In the following example,
my_ip_constraint.xdc file is being called with the subsequent late processing order
defined.

<spirit:file>
 <spirit:name>ttcl/my_ip_constraint.xdc</spirit:name>
 <spirit:userFileType>ttcl</spirit:userFileType>
 <spirit:userFileType>USED_IN_implementation</
spirit:userFileType>
 <spirit:userFileType>USED_IN_synthesis</spirit:userFileType>
 <spirit:define>
 <spirit:name>processing_order</spirit:name>
 <spirit:value>late</spirit:value>
 </spirit:define>
</spirit:file>

Creating the .xo File from the RTL Kernel
The final step is to package the RTL IP into a Xilinx object file (.xo), so the kernel can be used in
the Vitis core development kit. This is done using the package_xo Tcl command in the Vivado
Design Suite.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 123Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=123

The package_xo command uses the component.xml file from the IP to create the necessary
kernel.xml if possible. The Vivado tool runs design rule checks as a pre-processor for
package_xo to determine that everything is available and either processes the IP to create
the .xo file, or returns errors indicating any problems that might exist.

The following example packages an RTL kernel IP named test_sincos into an object file
named test.xo. After packaging the IP, the package_xo command is run from within the
Vivado tool.

package_xo -xo_path ./test.xo -kernel_name test_sincos -ip_directory ./ip/

The output of the package_xo command is the test.xo file, that can be added as a source file
to the v++ --link command as discussed in Section III: Building and Running the Application,
or added to an application project as discussed in Section VII: Using the Vitis IDE.

In some cases, you might find it necessary to provide a kernel.xml file for your IP, as specified
in the requirements described in Creating the Kernel Description XML File. You can use the -
kernel_xml option to specify the file for the package_xo command. In this case, the
package_xo command uses the kernel.xml as specified. The following example shows this
command.

package_xo -xo_path ./export/test.xo -kernel_name test_sincos \
-kernel_xml ./src/kernel.xml -ip_directory ./ip/

Creating the Kernel Description XML File
TIP: The package_xo  command will create a kernel.xml  file from the component.xml  of a
packaged IP, so you do not need to manually provide one, or generate one using the RTL Kernel wizard.

An XML kernel description file, called kernel.xml, must be created for each RTL kernel, so that
it can be used in the Vitis application acceleration development flow. The kernel.xml file
specifies kernel attributes like the register map and ports needed by the runtime and Vitis tool
flows. The following code shows is an example of a kernel.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<root versionMajor="1" versionMinor="6">
 <kernel name="vitis_kernel_wizard_0" language="ip_c"
 vlnv="mycompany.com:kernel:vitis_kernel_wizard_0:1.0"
 attributes="" preferredWorkGroupSizeMultiple="0" workGroupSize="1"
interrupt="true">
 <ports>
 <port name="s_axi_control" mode="slave" range="0x1000" dataWidth="32"
portType="addressable" base="0x0"/>
 <port name="m00_axi" mode="master" range="0xFFFFFFFFFFFFFFFF"
dataWidth="512" portType="addressable"
 base="0x0"/>
 </ports>
 <args>
 <arg name="axi00_ptr0" addressQualifier="1" id="0" port="m00_axi"

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=124

size="0x8" offset="0x010" type="int*"
 hostOffset="0x0" hostSize="0x8"/>
 </args>
 </kernel>
</root>

Note: The kernel.xml file can be created automatically using the RTL Kernel Wizard to specify the
interface specification of your RTL kernel. For more information, refer to RTL Kernel Wizard.

The following table describes the format of the kernel.xml in detail:

Table 12: Kernel XML File Content

Tag Attribute Description

<root>
versionMajor For the current release of Vitis software platform, set to 1.

versionMinor For the current release of Vitis software platform, set to 6.

<kernel>

name Kernel name

language Always set to ip_c for RTL kernels.

vlnv

Must match the vendor, library, name, and version attributes in
the component.xml of an IP. For example, if component.xml has
the following tags:
<spirit:vendor>xilinx.com</spirit:vendor>

<spirit:library>hls</spirit:library>

<spirit:name>test_sincos</spirit:name>

<spirit:version>1.0</spirit:version>

The vlnv attribute in kernel XML must be set
to:xilinx.com:hls:test_sincos:1.0

attributes Reserved. Set it to empty string: ""

preferredWorkGroupSizeMultiple Reserved. Set it to 0.

workGroupSize Reserved. Set it to 1.

interrupt Set to "true" (interrupt="true") if the RTL kernel has an interrupt,
otherwise omit.

hwControlProtocol Specifies the control protocol for the RTL kernel.
• ap_ctrl_hs: Default control protocol for RTL kernels.

• ap_ctrl_chain: Control protocol for chained kernels that
support dataflow. Adds ap_continue to the control registers
to enable ap_done/ap_continue completion
acknowledgment.

• ap_ctrl_none: Control protocol (none) applied for
continuously operating kernels that have no need for start or
done. For details, refer to Free-Running Kernel.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=125

Table 12: Kernel XML File Content (cont'd)

Tag Attribute Description

<port>

name

Specifies the port name.

IMPORTANT! The AXI4-Lite interface must be named
S_AXI_CONTROL.

mode

At least one AXI4 master port and one AXI4-Lite slave control port
are required.
AXI4-Stream ports can be specified to stream data between
kernels.
• For AXI4 master port, set to "master."
• For AXI4 slave port, set to "slave."
• For AXI4-Stream master port, set to "write_only."
• For AXI4-Stream slave port, set it "read_only."

range The range of the address space for the port.

dataWidth The width of the data that goes through the port, default is 32-bits.

portType Indicate whether or not the port is addressable or streaming.
• For AXI4 master and slave ports, set it to "addressable."
• For AXI4-Stream ports, set it to "stream."

base For AXI4 master and slave ports, set to 0x0. This tag is not
applicable to AXI4-Stream ports.

<arg>

name Specifies the kernel software argument name.

addressQualifier

Valid values:
0: Scalar kernel input argument
1: global memory
2: local memory
3: constant memory
4: pipe

id

Only applicable for AXI4 master and slave ports. The ID needs to
be sequential. It is used to determine the order of kernel
arguments.
Not applicable for AXI4-Stream ports.

port Specifies the <port> name to which the arg is connected.

size Size of the argument in bytes. The default is 4 bytes.

offset Indicates the register memory address.

type The C data type of the argument. For example, uint*, int*, or
float*.

hostOffset Reserved. Set to 0x0.

hostSize Size of the argument. The default is 4 bytes.

memSize

For AXI4-Stream ports, memSize sets the depth of the created
FIFO.

TIP: Not applicable to AXI4 ports.

The following tags specify additional tags for AXI4-Stream ports. They do not apply to AXI4 ports.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=126

Table 12: Kernel XML File Content (cont'd)

Tag Attribute Description

<pipe>

For each pipe in the compute unit, the compiler inserts a FIFO for buffering the data. The pipe tag
describes configuration of the FIFO.

name
Specifies the name for the FIFO inserted for the AXI4-Stream port.
This name must be unique to all pipes used in the same compute
unit.

width Specifies the width of FIFO in bytes. For example, 0x4 for 32-bit
FIFO.

depth Specifies the depth of the FIFO in number of words.

linkage Always set to internal.

<connection>

The connection tag describes the actual connection in hardware, either from the kernel to the FIFO
inserted for the PIPE, or from the FIFO to the kernel.

srcInst Specifies the source instance of the connection.

srcPort Specifies the port on the source instance for the connection.

dstInst Specifies the destination instance of the connection.

dstPort Specifies the port on the destination instance of the connection.

RTL Kernel Wizard
The RTL kernel wizard automates some of the steps you need to take to ensure that the RTL IP is
packaged into a kernel object (.xo) that can be used by the Vitis compiler. The RTL Kernel
wizard:

• Steps you through the process of specifying the interface requirements for your RTL kernel,
and generates a top-level RTL wrapper based on the provided information.

• Automatically generates an AXI4-Lite interface module including the control logic and register
file, included in the top level wrapper.

• Includes an example kernel IP module in the top-level wrapper that you can replace with your
own RTL IP design, after ensuring correct connectivity between your RTL IP and the wrapper.

• Automatically generates a kernel.xml file to match the kernel specification from the wizard.

• Generates a simple simulation test bench for the generated RTL kernel wrapper.

• Generates an example host program to run and debug the RTL kernel.

The RTL Kernel wizard can be accessed from the Vitis IDE, or from the Vivado IP catalog. In
either case it creates a Vivado project containing an example design to act as a template for
defining your own RTL kernel.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=127

The example design consists of a simple RTL IP adder, called VADD, that you can use to guide
you through the process of mapping your own RTL IP into the generated top-level wrapper. The
connections include clock(s), reset(s), s_axilite control interface, m_axi interfaces, and
optionally axis streaming interfaces.

The Wizard also generates a simple test bench for the generated RTL kernel wrapper, and a
sample host code to exercise the example RTL kernel. This example test bench and host code
must be modified to test the your RTL IP design accordingly.

Launch the RTL Kernel Wizard
The RTL Kernel Wizard can be launched from the Vitis IDE, or from the Vivado IDE.

TIP: Running the wizard from the Vitis IDE automatically imports the generated RTL kernel, and example
host code, into the current application project when the process is complete.

To launch the RTL Kernel Wizard from within the Vitis IDE, select the Xilinx → RTL Kernel Wizard
menu item from an open application project. For details on working with the GUI, refer to
Section VII: Using the Vitis IDE.

To launch the RTL Kernel Wizard from the Vivado IDE:

1. Create a new Vivado project, select the target platform when choosing a board for the
project.

2. In the Flow Navigator, click the IP catalog command.

3. Type RTL Kernel in the IP catalog search box.

4. Double-click RTL Kernel Wizard to launch the wizard.

Using the RTL Kernel Wizard
The RTL Kernel wizard is organized into multiple pages that break down the process of defining
an RTL kernel. The pages of the wizard include:

1. General Settings

2. Scalars

3. Global Memory

4. Streaming Interfaces

5. Summary

To navigate between pages, click Next and Back as needed.

To finalize the kernel and build a project based on the kernel specification, click OK on the
Summary page.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=128

General Settings

The following figure shows the three settings in the General Settings tab.

Figure 25: RTL Kernel Wizard General Settings

The following are three settings in the General Settings tab.

Kernel Identification

• Kernel name: The kernel name. This will be the name of the IP, top-level module name, kernel,
and C/C++ functional model. This identifier shall conform to C and Verilog identifier naming
rules. It must also conform to Vivado IP integrator naming rules, which prohibits underscores
except when placed in between alphanumeric characters.

• Kernel vendor: The name of the vendor. Used in the Vendor/Library/Name/Version (VLNV)
format described in the Vivado Design Suite User Guide: Designing with IP (UG896).

• Kernel library: The name of the library. Used in the VLNV. Must conform to the same
identifier rules.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 129Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=129

Kernel options

• Kernel type: The RTL Kernel wizard currently supports two types of kernels: RTL, and Block
Design.

• RTL: The RTL type kernel consists of a Verilog RTL top-level module with a Verilog control
register module and a Verilog kernel example inside the top-level module.

• Block Design: The block design type kernel also delivers a Verilog top-level module, but
instead it instantiates an IP integrator block diagram inside of the top-level. The block
design consists of a MicroBlaze™ subsystem that uses a block RAM exchange memory to
emulate the control registers. Example MicroBlaze software is delivered with the project to
demonstrate using the MicroBlaze to control the kernel.

• Kernel control interface: There are three types of control interfaces available for the RTL
kernel. ap_ctrl_hs, ap_ctrl_chain, and ap_ctrl_none. This defines the
hwControlProtocol for the <kernel> tag as described in Creating the Kernel Description
XML File.

Clock and Reset Options

• Number of clocks: Sets the number of clocks used by the kernel. Every RTL kernel has one
primary clock called ap_clk and an optional reset called ap_rst_n. All AXI interfaces on the
kernel are driven with this clock.

When setting Number of clocks to 2, a secondary clock and optional reset are provided to be
used by the kernel internally. The secondary clock and reset are called ap_clk_2 and
ap_rst_n_2. This secondary clock supports independent frequency scaling and is
independent from the primary clock. The secondary clock is useful if the kernel clock needs to
run at a faster or slower rate than the AXI4 interfaces, which must be clocked on the primary
clock.

IMPORTANT! When designing with multiple clocks, proper clock domain crossing techniques must be
used to ensure data integrity across all clock frequency scenarios. Refer to UltraFast Design
Methodology Guide for the Vivado Design Suite (UG949) for more information.

• Has reset: Specifies whether to include a top-level reset input port to the kernel. Omitting a
reset can be useful to improve routing congestion of large designs. Any registers that would
normally have a reset in the design should have proper initial values to ensure correctness. If
enabled, there is a reset port included with each clock. Block Design type kernels must have a
reset input.

Scalars

Scalar arguments are used to pass control type information to the kernels. Scalar arguments
cannot be read back from the host. For each argument that is specified, a corresponding register
is created to facilitate passing the argument from software to hardware. See the following figure.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 130Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=130

Figure 26: Kernel Wizard Scalars

• Number of scalar kernel input arguments: Specifies the number of scalar input arguments to
pass to the kernel. For each number specified, a table row is generated that allows
customization of the argument name and argument type. There is no required minimum
number of scalars and the maximum allowed by the wizard is 64.

The following is the scalar input argument definition:

• Argument name: The argument name is used in the generated Verilog control register module
as an output signal. Each argument is assigned an ID value. This ID value is used to access the
argument from the host software. The ID value assignments can be found on the summary
page of this wizard. To ensure maximum compatibility, the argument name follows the same
identifier rules as the kernel name.

• Argument type: Specifies the data type, and hence bit-width, of the argument. This affects the
register width in the generated RTL kernel module. The data types available are limited to the
ones specified by the OpenCL C Specification Version 2.0 in "6.1.1 Built-in Scalar Data Types"
section. The specification provides the associated bit-widths for each data type. The RTL
wizard reserves 64 bits for all scalars in the register map regardless of their argument type. If
the argument type is 32 bits or less, the RTL Wizard sets the upper 32 bits (of the 64 bits
allocated) as a reserved address location. Data types that represent a bit width greater than 32
bits require two write operations to the control registers.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 131Send Feedback

https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=131

Global Memory

Figure 27: Global Memory

Global memory is accessed by the kernel through AXI4 master interfaces. Each AXI4 interface
operates independently of each other, and each AXI4 interface can be connected to one or more
memory controllers to off-chip memory such as DDR4. Global memory is primarily used to pass
large data sets to and from the kernel from the host. It can also be used to pass data between
kernels. For recommendations on how to design these interfaces for optimal performance, see
Memory Performance Optimizations for AXI4 Interface.

TIP: For each interface, the RTL Kernel wizard generates example AXI master logic in the top-level wrapper
to provide a starting point that can be discarded if not needed.

• Number of AXI master interfaces: Specify the number of interfaces present on the kernel. The
maximum is 16 interfaces. For each interface, you can customize an interface name, data
width, and the number of associated arguments. Each interface contains all read and write
channels. The default names proposed by the RTL kernel wizard are m00_axi and m01_axi.
If not changed, these names will have to be used when assigning an interface to global
memory as described in Mapping Kernel Ports to Global Memory.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=132

AXI master definition (table columns)

• Interface name: Specifies the name of the interface. To ensure maximum compatibility, the
argument name follows the same identifier rules as the kernel name.

• Width (in bytes): Specifies the data width of the AXI data channels. Xilinx recommends
matching to the native data width of the memory controller AXI4 slave interface. The memory
controller slave interface is typically 64 bytes (512 bits) wide.

• Number of arguments: Specifies the number of arguments to associate with this interface.
Each argument represents a data pointer to global memory that the kernel can access.

Argument definition

• Interface: Specifies the name of the AXI Interface. This value is copied from the interface
name defined in the table, and cannot be modified here.

• Argument name: Specifies the name of the pointer argument as it appears on the function
prototype signature. Each argument is assigned an ID value. This ID value is used to access the
argument from the host software as described in Host Application. The ID value assignments
can be found on the summary page of this wizard. To ensure maximum compatibility, the
argument name follows the same identifier rules as the kernel name. The argument name is
used in the generated RTL kernel control register module as an output signal.

Streaming Interfaces

The streaming interfaces page allows configuration of AXI4-Stream interfaces on the kernel.
Streaming interfaces are only available on select platforms and if the chosen platform does not
support streaming, then the page does not appear. Streaming interfaces are used for direct host-
to-kernel and kernel-to-host communication, as well as continuously operating kernels as
described in Streaming Data Transfers.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=133

Figure 28: Streaming Interfaces

• Number of AXI4-Stream interfaces: Specifies the number of AXI4-Stream interfaces that exist
on the kernel. A maximum of 32 interfaces can be enabled per kernel. Xilinx recommends
keeping the number of interfaces as low as possible to reduce the amount of area consumed.

• Name: Specifies the name of the interface. To ensure maximum compatibility, the argument
name follows the same identifier rules as the kernel name.

• Mode: Specifies whether the interface is a master or slave interface. An AXI4-Stream slave
interface is a read-only interface, and the RTL kernel can be sent data with the
clWriteStream API from the host program. An AXI4-Stream master interface is a write-
only interface, and the host program can receive data through the interface with the
clReadStream API.

• Width (bytes): Specifies the TDATA width (in bytes) of the AXI4-Stream interface. This
interface width is limited to 1 to 64 bytes in powers of 2.

The streaming interface uses the TDATA/TKEEP/TLAST signals of the AXI4-Stream protocol.
Stream transactions consists of a series of transfers where the final transfer is terminated with
the assertion of the TLAST signal. Stream transfers must adhere to the following:

• AXI4-Stream transfer occurs when TVALID/TREADY are both asserted.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=134

• TDATA must be 8, 16, 32, 64, 128, 256, or 512 bits wide.

• TKEEP (per byte) must be all 1s when TLAST is 0.

• TKEEP can be used to signal a ragged tail when TLAST is 1. For example, on a 4-byte
interface, TKEEP can only be 0b0001, 0b0011, 0b0111, or 0b1111 to specify the last
transfer is 1-byte, 2 bytes, 3 bytes, or 4 bytes in size, respectively.

• TKEEP cannot be all zeros (even if TLAST is 1).

• TLAST must be asserted at the end of a packet.

• TREADY input/TVALID output should be low if kernel is not started to avoid lost transfers.

Summary

This section summarizes the VLNV for the RTL kernel IP, the software function prototype, and
hardware control registers created from options selected in the previous pages. The function
prototype conveys what a kernel call would be like if it was a C function. See the host code
generated example of how to set the kernel arguments for the kernel call. The register map
shows the relationship between the host software ID, argument name, hardware register offset,
type, and associated interface. Review this section for correctness before proceeding to generate
the kernel.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=135

Figure 29: Kernel Wizard Summary

Click OK to generate the top-level wrapper for the RTL kernel, the VADD temporary RTL kernel
IP, the kernel.xml file, the simulation test bench, and the example host.cpp code. After
these files are created, the RTL Kernel wizard opens a project in the Vivado Design Suite to let
you complete kernel development.

Using the RTL Kernel Project in Vivado IDE
If you launched the RTL Kernel wizard from the Vitis IDE, after clicking OK on the Summary
page, the Vivado Design Suite open with an example IP project to let you complete your RTL
kernel code.

If you launched the RTL Kernel wizard from within the Vivado IP catalog, after clicking OK on the
Summary page, an RTL Kernel Wizard IP is instantiated into your current project. From there you
must take the following steps:

1. When the Generate Output Products dialog box appears, click Skip to close it.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 136Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=136

2. Right-click the <kernel_name>.xci file that is added to the Sources view, and select Open
IP Example Design.

3. In the Open Example Design dialog box, specify the Example project directory, or accept the
default value, and click OK.

TIP: An example project is created for the RTL kernel IP. This example IP project is the same as the
example project created if you launch the RTL Kernel wizard from the Vitis IDE, and is where you will
complete the development work for your kernel.

4. You can now close the original Vivado project from which you launched the RTL Kernel
wizard.

Depending on the Kernel Type you selected for the kernel options, the example IP project is
populated with a top-level RTL kernel file that contains either a Verilog example and control
registers as described in RTL Type Kernel Project, or an instantiated IP integrator block design as
described in Block Design Type Kernel Project. The top-level Verilog file contains the expected
input/output signals and parameters. These top-level ports are matched to the kernel
specification file (kernel.xml) and can be combined with your RTL code, or /block design, to
complete the RTL kernel.

The AXI4 interfaces defined in the top-level file contain a minimum subset of AXI4 signals
required to generate an efficient, high throughput interface. Signals that are not present inherit
optimized defaults when connected to the rest of the AXI system. These optimized defaults allow
the system to omit AXI features that are not required, saving area and reducing complexity. If
your RTL code or block design contains AXI signals that were omitted, you can add these signals
to the ports in the top-level RTL kernel file, and the IP packager will adapt to them appropriately.

The next step in the process customizes the contents of the kernel and then packages those
contents into a Xilinx Object (xo) file.

RTL Type Kernel Project

The RTL type kernel delivers a top-level Verilog design consisting of control register and the
Vadd sub-modules example design. The following figure illustrates the top-level design
configured with two AXI4-master interfaces. Care should be taken if the Control Register module
is modified to ensure that it still aligns with the kernel.xml file located in the imports directory
of the Vivado kernel project. The example block can be replaced with your custom logic or used
as a starting point for your design.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=137

Figure 30: Kernel Type RTL Top

Kernel Top (Kernel Name)

Control Register Block
(Do Not Modify)

Example Block
(Replace or Modify)

Interrupt

control_s_axi

example

interrupt

m00_axi

m01_axi

Control
Signals

Scalar
Arguments

Global Memory
Arguments

AXI4-Lite Slave
Interface

axi_aresetn

axi_aclk

AXI4 Memory
Mapped Master

Interface

Control
Signals

Scalar
Arguments

Global Memory
Arguments

axi_aclk

axi_aresetn

krnl_clk AXI4 Memory
Mapped Master

Interfacekrnl_rst_n

ap_clk_2

ap_rst_n_2

ap_clk

ap_rst_n

ap
_s

ta
rt

ap
_i

dl
e

ap
_d

on
e

sc
al

ar
0

sc
al

ar
1

sc
al

ar
N

ax
i0

0_
pt

r0

ax
i0

0_
pt

r1

ax
i0

1_
pt

rN

s_axi_control

X22079-011019

The Vadd example block, shown in the following figure, consists of a simple adder function, an
AXI4 read master, and an AXI4 write master. Each defined AXI4 interface has independent
example adder code. The first associated argument of each interface is used as the data pointer
for the example. Each example reads 16 KB of data, performs a 32-bit add one operation, and
then writes out 16 KB of data back in place (the read and write address are the same).

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=138

Figure 31: Kernel Type RTL Example

Example Block

ap_start, ap_idle,
ap_done control logic

AXI4 Read Master
Vector
Adder
(+1)

AXI4 Write MasterAXI4-Stream AXI4-Stream

AXI4 Read Master
Vector
Adder
(+1)

AXI4 Write MasterAXI4-Stream AXI4-Stream

ap_clk (AXI) Domain

vadd_example_0

ap_clk2 (Kernel) Domain

ap_clk (AXI) Domain
vadd_example_1

ap_clk2 (Kernel) Domain

M_AXI AR
Channel

M_AXI R
Channel

M_AXI AR
Channel

M_AXI R
Channel

M_AXI AW
Channel

M_AXI W
Channel

M_AXI B
Channel

M_AXI AW
Channel

M_AXI W
Channel

M_AXI B
Channel

m
00

_a
xi

m
01

_a
xi

X22080-011019

The following table describes some important files in the example IP project, relative to the root
of the Vivado project for the kernel, where <kernel_name> is the name of the kernel you
specified in the RTL Kernel wizard.

Table 13: RTL Kernel Wizard Source and Test Bench File

Filename Description Delivered with
Kernel Type

<kernel_name>_ex.xpr Vivado project file All

imports directory

<kernel_name>.v Kernel top-level module All

<kernel_name>_control_s_axi.v RTL control register module RTL

<kernel_name>_example.sv RTL example block RTL

<kernel_name>_example_vadd.sv RTL example AXI4 vector add block RTL

<kernel_name>_example_axi_read_master.sv RTL example AXI4 read master RTL

<kernel_name>_example_axi_write_master.sv RTL example AXI4 write master RTL

<kernel_name>_example_adder.sv RTL example AXI4-Stream adder block RTL

<kernel_name>_example_counter.sv RTL example counter RTL

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=139

Table 13: RTL Kernel Wizard Source and Test Bench File (cont'd)

Filename Description Delivered with
Kernel Type

<kernel_name>_exdes_tb_basic.sv Simulation test bench All

<kernel_name>_cmodel.cpp Software C-Model example for software
emulation.

All

<kernel_name>_ooc.xdc Out-of-context Xilinx constraints file All

<kernel_name>_user.xdc Xilinx constraints file for kernel user
constraints.

All

kernel.xml Kernel description file All

package_kernel.tcl Kernel packaging script proc definitions All

post_synth_impl.tcl Tcl post-implementation file All

exports directory

src/host_example.cpp Host code example All

makefile Makefile example All

Block Design Type Kernel Project

The block design type kernel delivers an IP integrator block design (.bd) at the top-level of the
example project. A MicroBlaze processor subsystem is used to sample the control registers and
to control the flow of the kernel. The MicroBlaze processor system uses a block RAM as an
exchange memory between the host and the kernel instead of a register file.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=140

Figure 32: Block Design Type Kernel

For each AXI interface, a DMA and math operation sub-blocks are created to provide an example
of how to control the kernel execution. The example uses the MicroBlaze AXI4-Stream interfaces
to control the AXI Data Mover IP to create an example identical to the one in the RTL kernel
type. Also, included is a Vitis IDE project to compile and link an ELF file for the MicroBlaze core.
This ELF file is loaded into the Vivado kernel project and initialized directly into the MicroBlaze
instruction memory.

The following steps can be used to modify the MicroBlaze processor program:

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=141

1. If the design has been updated, you might need to run the Export Hardware option. The
option can be found in the File → Export → Export Hardware menu location. When the
Export Hardware dialog opens, click OK.

2. The core development kit application can now be invoked. Select Tools → Launch Vitis from
the main menu.

3. When the Vitis IDE opens, click X just to the right of the text on the Welcome tab to close
the welcome dialog box. This shows an already loaded Vitis IDE project underneath.

4. From the Project Explorer, the source files are under the <Kernel Name>_control/src
section. Modify these as appropriate.

5. When updates are complete, compile the source by selecting the menu option Project → 
Build All → Check for errors/warnings and resolve if necessary. The ELF file is automatically
updated in the IDE.

6. Run simulation to test the updated program and debug if necessary.

Simulation Test Bench

A SystemVerilog test bench is generated for simulating the example IP project. This test bench
exercises the RTL kernel to ensure its operation is correct. It is populated with the checker
function to verify the add one operation.

This generated test bench can be used as a starting point in verifying the kernel functionality. It
writes/reads from the control registers and executes the kernel multiple times while also
including a simple reset test. It is also useful for debugging AXI issues, reset issues, bugs during
multiple iterations, and kernel functionality. Compared to hardware emulation, it executes a more
rigorous test of the hardware corner cases, but does not test the interaction between host code
and kernel.

To run a simulation, click Vivado Flow Navigator → Run Simulation located on the left hand side
of the GUI and select Run Behavioral Simulation. If behavioral simulation is working as expected,
a post-synthesis functional simulation can be run to ensure that synthesis results are matched
with the behavioral model.

Out-of-Context Synthesis

The Vivado kernel project is configured to run synthesis and implementation in out-of-context
(OOC) mode. A Xilinx Design Constraints (XDC) file is populated in the design to provide default
clock frequencies for this purpose.

You should always synthesize the RTL kernel before packaging it with the package_xo
command. Running synthesis is useful to determine whether the kernel synthesizes without
errors. It also provides estimates of resource utilization and operating frequency. Without pre-
synthesizing the RTL kernel you could encounter errors during the v++ linking process, and it
could be much harder to debug the cause.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=142

To run OOC synthesis, click Run Synthesis from the Vivado Flow Navigator → Synthesis menu.

The synthesized outputs can also be used to package the RTL kernel with a netlist source, instead
of RTL source.

IMPORTANT! A block design type kernel must be packaged as a netlist using the package_xo 
command.

Software Model and Host Code Example

A C++ software model of the add one example operation,<kernel_name>_cmodel.cpp, is
provided in the ./imports directory. This software model can also be modified to model the
function of your kernel. When running package_xo, this model can be included with the kernel
source files to enable software emulation for the kernel. The hardware emulation and system
builds always use the RTL description of the kernel.

In the ./exports/src directory, an example host program is provided and is called
host_example.cpp. The host program takes the binary container as an argument to the
program. The host code loads the binary as part of the init function. The host code instantiates
the kernel, allocates the buffers, sets the kernel arguments, executes the kernel, and then collects
and checks the results for the example add one function.

For information on using the host program and kernel code in an application, refer to Creating a
Vitis IDE Project.

Generate RTL Kernel

After the kernel is designed and tested in the example IP project in the Vivado IDE, the final step
is to generate the RTL kernel object file (.xo) for use by the Vitis compiler.

Click the Generate RTL Kernel command from the Vivado Flow Navigator → Project Manager
menu. The Generate RTL Kernel dialog box opens with three main packaging options:

• A source-only kernel packages the kernel using the RTL design sources directly.

• The pre-synthesized kernel packages the kernel with the RTL design sources with a
synthesized cached output that can be used later on in the flow to avoid re-synthesizing. If the
target platform changes, the packaged kernel might fall back to the RTL design sources instead
of using the cached output.

• The netlist, design checkpoint (DCP), based kernel packages the kernel as a block box, using
the netlist generated by the synthesized output of the kernel. This output can be optionally
encrypted if necessary. If the target platform changes, the kernel might not be able to re-
target the new device and it must be regenerated from the source. If the design contains a
block design, the netlist (DCP) based kernel is the only packaging option available.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=143

Optionally, all kernel packaging types can be packaged with the software model that can be used
in software emulation. If the software model contains multiple files, provide a space in between
each file in the Source files list, or use the GUI to select multiple files using the CTRL key when
selecting the file.

After you click OK, the kernel output products are generated. If the pre-synthesized kernel or
netlist kernel option is chosen, then synthesis can run. If synthesis has previously run, it uses
those outputs, regardless if they are stale. The kernel Xilinx Object .xo file is generated in the
exports directory of the Vivado kernel project.

At this point, you can close the Vivado kernel project. If the Vivado kernel project was invoked
from the Vitis IDE, the example host code called host_example.cpp and kernel Xilinx Object
(.xo) files are automatically imported into the ./src folder of the application project in the Vitis
IDE.

Modifying an Existing RTL Kernel Generated from the Wizard

From the Vitis IDE, you can modify an existing RTL kernel by selecting it from the ./src folder
of an application project where it is in use. Right-click the .xo file in the Project Explorer view,
and select RTL Kernel Wizard. The Vitis IDE attempts to open the Vivado project for the selected
RTL kernel.

TIP: If the Vitis IDE is unable to find the Vivado project, it returns an error and does not let you edit the
RTL kernel.

A dialog box opens displaying two options to edit an existing RTL kernel. Selecting Edit Existing
Kernel Contents re-opens the Vivado Project, letting you modify and regenerate the kernel
contents. Selecting Re-customize Existing Kernel Interfaces opens the RTL Kernel wizard.
Options other than the Kernel Name can be modified, and the previous Vivado project is
replaced.

IMPORTANT! All files and changes in the previous Vivado project are lost when the updated RTL kernel
project is created.

Design Recommendations for RTL Kernels
While the RTL Kernel Wizard assists in packaging RTL designs for use within the Vitis core
development kit, the underlying RTL kernels should be designed with recommendations from the
UltraFast Design Methodology Guide for the Vivado Design Suite (UG949).

In addition to adhering to the interface and packaging requirements, the kernels should be
designed with the following performance goals in mind:

• Memory Performance Optimizations for AXI4 Interface

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 144Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=144

• Managing Clocks in an RTL Kernel

• Quality of Results Considerations

• Debug and Verification Considerations

Memory Performance Optimizations for AXI4
Interface
The AXI4 interfaces typically connects to DDR memory controllers in the platform.

RECOMMENDED: For optimal frequency and resource usage, it is recommended that one interface is
used per memory controller.

For best performance from the memory controller, the following is the recommended AXI
interface behavior:

• Use an AXI data width that matches the native memory controller AXI data width, typically
512-bits.

• Do not use WRAP, FIXED, or sub-sized bursts.

• Use burst transfer as large as possible (up to 4k byte AXI4 protocol limit).

• Avoid use of deasserted write strobes. Deasserted write strobes can cause error-correction
code (ECC) logic in the DDR memory controller to perform read-modify-write operations.

• Use pipelined AXI transactions.

• Avoid using threads if an AXI interface is only connected to one DDR controller.

• Avoid generating write address commands if the kernel does not have the ability to deliver the
full write transaction (non-blocking write requests).

• Avoid generating read address commands if the kernel does not have the capacity to accept
all the read data without back pressure (non-blocking read requests).

• If a read-only or write-only interfaces are desired, the ports of the unused channels can be
commented out in the top level RTL file before the project is packaged into a kernel.

• Using multiple threads can cause larger resource requirements in the infrastructure IP
between the kernel and the memory controllers.

Managing Clocks in an RTL Kernel
An RTL kernel can have up to two external clock interfaces; a primary clock, ap_clk, and an
optional secondary clock, ap_clk_2. Both clocks can be used for clocking internal logic.
However, all external RTL kernel interfaces must be clocked on the primary clock. Both primary
and secondary clocks support independent automatic frequency scaling.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=145

If you require additional clocks within the RTL kernel, a frequency synthesizer such as the
Clocking Wizard IP or MMCM/PLL primitive can be instantiated within the RTL kernel.
Therefore, your RTL kernel can use just the primary clock, both primary and secondary clock, or
primary and secondary clock along with an internal frequency synthesizer. The following shows
the advantages and disadvantages of using these three RTL kernel clocking methods:

• Single input clock: ap_clk

○ External interfaces and internal kernel logic run at the same frequency.

○ No clock-domain-crossing (CDC) issues.

○ Frequency of ap_clk can automatically be scaled to allow kernel to meet timing.

• Two input clocks: ap_clk and ap_clk_2

○ Kernel logic can run at either clock frequency.

○ Need proper CDC technique to move from one frequency to another.

○ Both ap_clk and ap_clk_2 can automatically scale their frequencies independently to
allow the kernel to meet timing.

• Using a frequency synthesizer inside the kernel:

○ Additional device resources required to generate clocks.

○ Must have ap_clk and optionally ap_clk_2 interfaces.

○ Generated clocks can have different frequencies for different CUs.

○ Kernel logic can run at any available clock frequency.

○ Need proper CDC technique to move from one frequency to another.

When using a frequency synthesizer in the RTL kernel there are some constraints you should be
aware of:

1. RTL external interfaces are clocked at ap_clk.

2. The frequency synthesizer can have multiple output clocks that are used as internal clocks to
the RTL kernel.

3. You must provide a Tcl script to downgrade DRCs related to clock resource placement in
Vivado placement to prevent a DRC error from occurring. Refer to
CLOCK_DEDICATED_ROUTE in the Vivado Design Suite Properties Reference Guide (UG912) for
more information. The following is an example of the needed Tcl command that you will add
to your Tcl script:

set_property CLOCK_DEDICATED_ROUTE ANY_CMT_COLUMN
[get_nets pfm_top_i/static_region/base_clocking/clkwiz_kernel/inst/
CLK_CORE_DRP_I/clk_inst/clk_out1

Note: This constraint should be edited to reflect the clock structure of your target platform.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 146Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug912-vivado-properties.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=146

4. Specify the Tcl script from step 3 for use by Vivado implementation, after optimization, by
using the v++ --vivado.prop option as described in --vivado Options. The following
option specifies a Tcl script for use by Vivado implementation, after completing the
optimization step:

--vivado.prop:run.impl_1.STEPS.OPT_DESIGN.TCL.POST={<PATH>/
<Script_Name>.tcl}

5. Specify the two global clock input frequencies which can be used by the kernels (RTL or HLS-
based). Use the v++ --kernel_frequency option to ensure the kernel input clock
frequency is as expected. For example to specify one clock use:

v++ --kernel_frequency 250

For two clocks, you can specify multiple frequencies based on the clock ID. The primary clock
has clock ID 0 and the secondary has clock ID 1.

v++ --kernel_frequency 0:250|1:500

TIP: Ensure that the PLL or MMCM output clock is locked before RTL kernel operations. Use the
locked signal in the RTL kernel to ensure the clock is operating correctly.

After adding the frequency synthesizer to an RTL kernel, the generated clocks are not
automatically scalable. Ensure the RTL kernel passes timing requirements, or v++ will return an
error like the following:

ERROR: [VPL-1] design did not meet timing - Design did not meet timing. One
or more unscalable system clocks did not meet their required target
frequency. Please try specifying a clock frequency lower than 300 MHz using
the '--kernel_frequency' switch for the next compilation. For all system
clocks, this design is using 0 nanoseconds as the threshold worst negative
slack (WNS) value. List of system clocks with timing failure.

In this case you will need to change the internal clock frequency, or optimize the kernel logic to
meet timing.

Quality of Results Considerations
The following recommendations help improve results for timing and area:

• Pipeline all reset inputs and internally distribute resets avoiding high fanout nets.

• Reset only essential control logic flip-flops.

• Consider registering input and output signals to the extent possible.

• Understand the size of the kernel relative to the capacity of the target platforms to ensure fit,
especially if multiple kernels will be instantiated.

• Recognize platforms that use stacked silicon interconnect (SSI) technology. These devices
have multiple die and any logic that must cross between them should be flip-flop to flip-flop
timing paths.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=147

Debug and Verification Considerations
• RTL kernels should be verified in their own test bench using advanced verification techniques

including verification components, randomization, and protocol checkers. The AXI Verification
IP (VIP) is available in the Vivado IP catalog and can help with the verification of AXI
interfaces. The RTL kernel example designs contain an AXI VIP-based test bench with sample
stimulus files.

• The hardware emulation flow should not be used for functional verification because it does
not accurately represent the range of possible protocol signaling conditions that real AXI
traffic in hardware can incur. Hardware emulation should be used to test the host code
software integration or to view the interaction between multiple kernels.

Section II: Developing Applications
Chapter 8: RTL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=148

Chapter 9

Streaming Data Transfers

Streaming Data Between the Host and Kernel
(H2K)

The Vitis core development kit provides a programming model that supports the direct streaming
of data from host-to-kernel and kernel-to-host, without the need to migrate data through global
memory as an intermediate step. This programming model uses minimal storage compared to the
larger and slower global memory bank, and thus significantly improves both performance and
power.

Using streaming data transfers brings the following advantages:

• The host application does not need to know the size of the data coming from the kernel.

• Data residing in host memory can be transferred to the kernel as soon as it is needed.

• Processed data can be transferred from the kernel back to the host program when it is
required.

Host-to-kernel and kernel-to-host streaming are only supported in PCIe-based platforms, such
as the Alveo Data Center accelerator cards. This feature is also only available on specific
target platforms, such as the QDMA platform for the Alveo Data Center accelerator cards.
However, kernel-to-kernel streaming data transfer is supported for both PCIe-based and
embedded platforms. If your platform is not configured to support streaming, your application
will not run.

Host Coding Guidelines
Xilinx provides new OpenCL™ APIs for streaming operation as extension APIs.

• clCreateStream(): Creates a read or write stream.

• clReleaseStream(): Frees the created stream and its associated memory.

• clWriteStream(): Writes data to stream.

• clReadStream(): Gets data from stream.

Section II: Developing Applications
Chapter 9: Streaming Data Transfers

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=149

• clPollStreams(): Polls for any stream on the device to finish. Required only for non-
blocking stream operation.

The typical API flow is described below:

• Create the required number of the read/write streams by clCreateStream.

○ Streams should be directly attached to the OpenCL device object because it does not use
any command queue. A stream itself is a command queue that only passes the data in a
particular direction, either the kernel reading data from the host, or the kernel writing data
to the host.

○ An appropriate flag should be used to denote the stream as XCL_STREAM_WRITE_ONLY
or XCL_STREAM_READ_ONLY; where read and write are from the perspective of the
kernel code.

○ To specify how the stream is connected to the device, a Xilinx extension pointer object
(cl_mem_ext_ptr_t) is used to identify the kernel, and the kernel argument the stream
is associated with.

IMPORTANT! If the streaming kernel has multiple compute units, the host code needs to use a
unique cl_kernel  object for each compute unit. The host code must use clCreateKernel 
with <kernel_name>:{compute_unit_name}  to get each compute unit, creating streams
for them, and enqueuing them individually.

In the following code example, a read_stream and a write_stream are created, and
associated with a cl_kernel object, and specified kernel arguments.

#include <CL/cl_ext_xilinx.h> // Required for Xilinx extension pointer

// Device connection specification of the stream through extension
pointer
cl_mem_ext_ptr_t ext; // Extension pointer
ext.param = kernel; // The .param should be set to kernel
 (cl_kernel type)
ext.obj = nullptr;

// The .flag should be used to denote the kernel argument
// Create write stream for argument 3 of kernel
ext.flags = 3;
cl_stream h2k_stream = clCreateStream(device_id, XCL_STREAM_READ_ONLY,
CL_STREAM, &ext, &ret);

// Create read stream for argument 4 of kernel
ext.flags = 4;
cl_stream k2h_stream = clCreateStream(device_id, XCL_STREAM_WRITE_ONLY,
CL_STREAM, &ext,&ret);

Section II: Developing Applications
Chapter 9: Streaming Data Transfers

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=150

• Set the remaining non-streaming kernel arguments and enqueue the kernel. The following
code block shows setting typical kernel argument (non-stream arguments, such as buffer
and/or scalar) and kernel enqueuing:

// Set kernel non-stream argument (if any)
clSetKernelArg(kernel, 0,...,...);
clSetKernelArg(kernel, 1,...,...);
clSetKernelArg(kernel, 2,...,...);
// Argument 3 and 4 are not set as those are already specified during
// the clCreateStream through the extension pointer

// Schedule kernel enqueue
clEnqueueTask(commands, kernel,);

• Initiate Read and Write transfers by clReadStream and clWriteStream commands.

○ Note the usage of attribute CL_STREAM_XFER_REQ associated with read and write
request.

○ The .flag is used to denote transfer mechanism.

• CL_STREAM_EOT: Currently, successful stream transfer mechanism depends on
identifying the end of the transfer by an End of Transfer signal. This flag is mandatory in
the current release.

• CL_STREAM_NONBLOCKING: By default the Read and Write transfers are blocking.
For non-blocking transfer, CL_STREAM_NONBLOCKING has to be set.

○ The .priv_data is used to specify a string (as a name for tagging purpose) associated
with the transfer. This will help identify specific transfer completion when polling the
stream completion. It is required when using the non-blocking version of the API.

In the following code block, the stream read and write transfers are executed with the non-
blocking approach.

// Initiate the READ transfer
cl_stream_xfer_req rd_req {0};

rd_req.flags = CL_STREAM_EOT | CL_STREAM_NONBLOCKING;
rd_req.priv_data = (void*)"read"; // You can think of this as tagging
the
 // transfer with a name

clReadStream(k2h_stream, host_read_ptr, max_read_size, &rd_req, &ret);

// Initiating the WRITE transfer
cl_stream_xfer_req wr_req {0};

wr_req.flags = CL_STREAM_EOT | CL_STREAM_NONBLOCKING;
wr_req.priv_data = (void*)"write";

clWriteStream(h2k_stream, host_write_ptr, write_size, &wr_req , &ret);

Section II: Developing Applications
Chapter 9: Streaming Data Transfers

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=151

• Poll all the streams for completion. For the non-blocking transfer, a polling API is provided to
ensure the read/write transfers are completed. For the blocking version of the API, polling is
not required.

○ The polling results are stored in the cl_streams_poll_req_completions array,
which can be used in verifying and checking the stream events result.

○ The clPollStreams is a blocking API. It returns the execution to the host code as soon
as it receives the notification that all stream requests have been completed, or until you
specify the timeout.

// Checking the request completion
 cl_streams_poll_req_completions poll_req[2] {0, 0}; // 2 Requests

 auto num_compl = 2;
 clPollStreams(device_id, poll_req, 2, 2, &num_compl, 5000, &ret);
 // Blocking API, waits for 2 poll request completion or 5000ms,
 whichever occurs first

• Read and use the stream data in host.

○ After the successful poll request is completed, the host can read the data from the host
pointer.

○ Also, the host can check the size of the data transferred to the host. For this purpose, the
host needs to find the correct poll request by matching priv_data and then fetching
nbytes (the number of bytes transferred) from the
cl_streams_poll_req_completions structure.

for (auto i=0; i<2; ++i) {
 if(rd_req.priv_data == poll_req[i].priv_data) { // Identifying the
 read transfer
 // Getting read size, data size from kernel is unknown
 ssize_t result_size=poll_req[i].nbytes;
 }
 }

The header file containing function prototype and argument description is available in the Xilinx
Runtime GitHub repository.

Kernel Coding Guidelines
The basic guidelines to develop stream-based C kernel are as follows:

• Use hls::stream with the qdma_axis<D,0,0,0> data type. The qdma_axis data type
needs the header file ap_axi_sdata.h.

• When hls::stream is used to define a parameter data type, the Vitis HLS tool infers an
axis streaming interface.

Section II: Developing Applications
Chapter 9: Streaming Data Transfers

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 152Send Feedback

https://github.com/Xilinx/XRT/blob/master/src/include/1_2/CL/cl_ext_xilinx.h
https://github.com/Xilinx/XRT/blob/master/src/include/1_2/CL/cl_ext_xilinx.h
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=152

• The qdma_axis<D,0,0,0> is a special class used for data transfer between host and kernel
when using the streaming platform. This is only used in the streaming kernel interface
interacting with the host, not with another kernel. The template parameter <D> denotes data
width. The remaining three parameters should be set to 0 (not to be used in the current
release).

• The following code block shows a simple kernel interface with one input stream and one
output stream.

#include "ap_axi_sdata.h"
#include "hls_stream.h"

//qdma_axis is the HLS class for stream data transfer between host and
kernel for streaming platform
//It contains "data" and two sideband signals (last and keep) exposed to
the user via class member function.
typedef qdma_axis<64,0,0,0> datap;

void kernel_top (
 hls::stream<datap> &input,
 hls::stream<datap> &output,
 , // Other Inputs/Outputs if any
)
{

 ...
}

TIP: Because the datatype is defined as hls::stream , the Vitis HLS tool infers axis  interfaces.
The following INTERFACE pragmas are shown as an example, but are not added to the code.

#pragma HLS INTERFACE axis port=input
#pragma HLS INTERFACE axis port=output

• The qdma_axis data type contains three variables, which should be used inside the kernel
code:

• data: Internally, the qdma_axis data type contains an ap_int <D> that should be
accessed by the .get_data() and .set_data() method.

• The D must be 8, 16, 32, 64, 128, 256, or 512 bits wide.

• last: The last variable is used to indicate the last value of an incoming and outgoing
stream. When reading from the input stream, last is used to detect the end of the stream.
Similarly when kernel writes to an output stream transferred to the host, the last must be
set to indicate the end of stream.

• get_last/set_last: Accesses and sets the last variable used to denote the last
data in the stream.

• keep: In some special situations, the keep signal can be used to truncate the last data to
the fewer number of bytes. However, the keep should not be used to any data other than
the last data from the stream. Therefore, in most of the cases, you should set keep to -1
for all of the outgoing data from the kernel.

• get_keep/set_keep: Accesses/sets the keep variable.

Section II: Developing Applications
Chapter 9: Streaming Data Transfers

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=153

• For all the data before the last data, keep must be set to -1 to denote all bytes of the
data are valid.

• For the last data, the kernel has the flexibility to send fewer bytes. For example, for the
four bytes of data transfer, the kernel can truncate the last data by sending one byte,
two bytes, or three bytes using the following set_keep() function.

○ If the last data is one byte ≥ .set_keep(1)

○ If the last data is two bytes ≥ .set_keep(3)

○ If the last data is three bytes ≥ .set_keep(7)

○ If the last data is all four bytes (similar to all non-last data) ≥ .set_keep(-1)

• The following code block shows how the stream input is read. Note the usage of .last to
determine the last data.

// Stream Read
// Using "last" flag to determine the end of input-stream
// when kernel does not know the length of the input data
 hls::stream<ap_uint<64> > internal_stream;
 while(true) {
 datap temp = input.read(); // "input" -> Input stream
 internal_stream << temp.get_data(); // Getting data from the
 stream
 if(temp.get_last()) // Getting last signal to determine the
 EOT (end of transfer).
 break;
 }

• The following code block shows how the stream output is written. The set_keep is setting
-1 for all data (general case). The kernel also uses the set_last() to specify the last data of
the stream.

IMPORTANT! For the proper functionality of the host and kernel system, set the last  bit setting.

// Stream Write
for(int j = 0; j <....; j++) {
 datap t;
 t.set_data(...);
 t.set_keep(-1); // keep flag -1 , all bytes are valid
 if(...) // check if this is last data to be write
 t.set_last(1); // Setting last data of the stream
 else
 t.set_last(0);
 output.write(t); // output stream from the kernel
}

Section II: Developing Applications
Chapter 9: Streaming Data Transfers

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=154

Streaming Data Transfers Between Kernels
(K2K)

The Vitis core development kit also supports streaming data transfer between two kernels.
Consider the situation where one kernel is performing some part of the computation, and the
second kernel completes the operation after receiving the output data from the first kernel. With
kernel-to-kernel streaming support, data can move directly from one kernel to another without
having to transmit back through the global memory. This results in a significant performance
improvement.

IMPORTANT! This feature is only available on specific target platforms, such as the QDMA platform for
the Alveo Data Center accelerator cards. If your platform is not configured to support streaming, your
application will not run.

Host Coding Guidelines
The kernel ports involved in kernel-to-kernel streaming do not require setup using the
clSetKernelArg from the host code. All kernel arguments not involved in the streaming
connection should be set up using clSetKernelArg as described in Setting Kernel Arguments.
However, kernel ports involved in streaming will be defined within the kernel itself, and are not
addressed by the host program.

Streaming Kernel Coding Guidelines
In a kernel, the streaming interface directly sending or receiving data to another kernel streaming
interface is defined by hls::stream with the ap_axiu<D,0,0,0> data type. The
ap_axiu<D,0,0,0> data type requires the use of the ap_axi_sdata.h header file.

IMPORTANT! Host-to-kernel and kernel-to-host streaming (see Streaming Data Between the Host and
Kernel (H2K)) requires the use of the qdma_axis  data type. Both the ap_axiu  and qdma_axis  data
types are defined inside the ap_axi_sdata.h  header file that is distributed with the Vitis software
platform installation.

The following example shows the streaming interfaces of the producer and consumer kernels.

// Producer kernel - provides output as a data stream
// The example kernel code does not show any other inputs or outputs.

void kernel1 (.... , hls::stream<ap_axiu<32, 0, 0, 0> >& stream_out) {

 for(int i = 0; i < ...; i++) {
 int a = ; // Internally generated data
 ap_axiu<32, 0, 0, 0> v; // temporary storage for ap_axiu
 v.data = a; // Writing the data
 stream_out.write(v); // Writing to the output stream.
 }

Section II: Developing Applications
Chapter 9: Streaming Data Transfers

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=155

}

// Consumer kernel - reads data stream as input
// The example kernel code does not show any other inputs or outputs.

void kernel2 (hls::stream<ap_axiu<32, 0, 0, 0> >& stream_in,) {

 for(int i = 0; i <; i++) {
 ap_axiu<32, 0, 0, 0> v = stream_in.read(); // Reading the input stream
 int a = v.data; // Extract the data

 // Do further processing
 }
}

Because the hls::stream data type is defined, the Vitis HLS tool infers axis interfaces. The
following INTERFACE pragmas are shown as an example, but are not added to the code.

#pragma HLS INTERFACE axis port=stream_out
#pragma HLS INTERFACE axis port=stream_in

TIP: These example kernels show the definition of the streaming input/output ports in the kernel signature,
and the handling of the input/output stream in the kernel code. The connection of kernel1  to
kernel2  must be defined during the kernel linking process as described in Specify Streaming
Connections between Compute Units.

For more information on mapping streaming connections, refer to Section III: Building and
Running the Application.

Free-Running Kernel
The Vitis core development kit provides support for one or more free-running kernels. Free-
running kernels have no control signal ports, and cannot be started or stopped. The no-control
signal feature of the free-running kernel results in the following characteristics:

• The free-running kernel has no memory input or output port, and therefore it interacts with
the host or other kernels (other kernels can be regular kernel or another free running kernel)
only through streams.

• When the FPGA is programmed by the binary container (xclbin), the free-running kernel
starts running on the FPGA, and therefore it does not need the clEnqueueTask command
from the host code.

• The kernel works on the stream data as soon as it starts receiving from the host or other
kernels, and it stalls when the data is not available.

• The free-running kernel needs a special interface pragma ap_ctrl_none inside the kernel
body.

Section II: Developing Applications
Chapter 9: Streaming Data Transfers

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=156

Host Coding for Free-Running Kernels
If the free-running kernel interacts with the host, the host code should manage the stream
operation by clCreateStream/clReadStream/clWriteStream as discussed in Host
Coding Guidelines of Streaming Data Between the Host and Kernel (H2K). As the free-running
kernel has no other types of inputs or outputs, such as memory ports or control ports, there is no
need to specify clSetKernelArg. The clEnqueueTask is not used because the kernel works
on the stream data as soon as it starts receiving from the host or other kernels, and it stalls when
the data is not available.

Coding Guidelines for Free-Running Kernels
As mentioned previously, the free-running kernel only contains hls::stream inputs and
outputs. The recommended coding guidelines include:

• Use hls::stream<ap_axiu<D,0,0,0> > if the port is interacting with another stream
port from the kernel.

• Use hls::stream<qdma_axis<D,0,0,0> > if the port is interacting with the host.

• Use the hls::stream data type for the function parameter causes Vitis HLS to infer an
AXI4-Stream port (axis) for the interface.

• The free-running kernel must also specify the following special INTERFACE pragma.

#pragma HLS interface ap_ctrl_none port=return

IMPORTANT! The kernel interface should not have any #pragma HLS interface s_axilite  or
#pragma HLS interface m_axi  (as there should not be any memory or control port).

The following code example shows a free-running kernel with one input and one output
communicating with another kernel. The while(1) loop structure contains the substance of the
kernel code, which repeats as long as the kernel runs.

void kernel_top(hls::stream<ap_axiu<32, 0, 0, 0> >& input,
 hls::stream<ap_axiu<32, 0, 0, 0> >& output) {
#pragma HLS interface ap_ctrl_none port=return // Special pragma for free-
running kernel

#pragma HLS DATAFLOW // The kernel is using DATAFLOW optimization
 while(1) {
 ...
 }
}

TIP: The example shows the definition of the streaming input/output ports in a free-running kernel.
However, the streaming connection from the free-running kernel to or from another kernel must be defined
during the kernel linking process as described in Specify Streaming Connections between Compute Units.

Section II: Developing Applications
Chapter 9: Streaming Data Transfers

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=157

Chapter 10

OpenCL Kernels
The following OpenCL kernel discussion is based on the information provided in the C/C++
Kernels topic. The same programming techniques for accelerating the performance of a kernel
apply to both C/C++ and OpenCL kernels. However, the OpenCL kernel uses the __attribute
syntax in place of pragmas. For details of the available attributes, refer to OpenCL Attributes.

The following code examples show some of the elements of an OpenCL kernel for the Vitis
application acceleration development flow. This is not intended to be a primer on OpenCL or
kernel development, but to merely highlight some of the key difference between OpenCL and
C/C++ kernels.

Kernel Signature

In C/C++ kernels, the kernel is identified on the Vitis compiler command line using the v++ --
kernel option. However, in OpenCL code, the __kernel keyword identifies a kernel in the
code. You can have multiple kernels defined in a single .cl file, and the Vitis compiler will
compile all of the kernels, unless you specify the --kernel option to identify which kernel to
compile.

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void apply_watermark(__global const TYPE * __restrict input,
 __global TYPE * __restrict output, int width, int height) {
{
 ...
}

TIP: The complete code for the kernel function above, apply_watermark , can be found in the Global
Memory Two Banks (CL) example in theVitis Accel Examples GitHub repository.

In the example above, you can see the watermark kernel has two pointer type arguments: input
and output, and has two scalar type int arguments: width and height.

In C/C++ kernels, these arguments would need to be identified with the HLS INTERFACE
pragmas. However, in the OpenCL kernel, the Vitis compiler, and Vitis HLS recognize the kernel
arguments, and compile them as needed: pointer arguments into m_axi interfaces, and scalar
arguments into s_axilite interfaces.

Section II: Developing Applications
Chapter 10: OpenCL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 158Send Feedback

https://github.com/Xilinx/Vitis_Accel_Examples/tree/master/ocl_kernels/cl_gmem_2banks
https://github.com/Xilinx/Vitis_Accel_Examples/tree/master/ocl_kernels/cl_gmem_2banks
https://github.com/Xilinx/Vitis_Accel_Examples
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=158

Kernel Optimizations

Because the kernel is running in programmable logic on the target platform, optimizing your task
to the environment is an important element of application design. Most of the optimization
techniques discussed in C/C++ Kernels can be applied to OpenCL kernels. Instead of applying
the HLS pragmas used for C/C++ kernels, you will use the __attribute__ keyword described
in OpenCL Attributes. Following is an example:

// Process the whole image
__attribute__((xcl_pipeline_loop))
image_traverse: for (uint idx = 0, x = 0 , y = 0 ; idx < size ; ++idx, x+=
DATA_SIZE)
{
 ...
}

The example above specifies that the for loop, image_traverse, should be pipelined to
improve the performance of the kernel. The target II in this case is 1. For more information, refer
to xcl_pipeline_loop.

In the following code example, the watermark function uses the opencl_unroll_hint
attribute to let the Vitis compiler unroll the loop to reduce latency and improve performance.
However, in this case the __attribute__ is only a suggestion that the compiler can ignore if
needed. For details, refer to opencl_unroll_hint.

//Unrolling below loop to process all 16 pixels concurrently
__attribute__((opencl_unroll_hint))
watermark: for (int i = 0 ; i < DATA_SIZE ; i++)
{
 ...
}

For more information, review the OpenCL Attributes topics to see what specific optimizations
are supported for OpenCL kernels, and review the C/C++ Kernels content to see how these
optimizations can be applied in your kernel design.

Section II: Developing Applications
Chapter 10: OpenCL Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 159Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=159

Chapter 11

Best Practices for Acceleration with
Vitis

Below are some specific things to keep in mind when developing your application code and
hardware function in the Vitis™ core development kit.

• Review the Methodology for Accelerating Applications with the Vitis Software Platform
section for information about acceleration methodology.

• Look to accelerate functions that have a high ratio of compute time to input and output data
volume. Compute time can be greatly reduced using FPGA kernels, but data volume adds
transfer latency.

• Accelerate functions that have a self-contained control structure and do not require regular
synchronization with the host.

• Transfer large blocks of data from host to global device memory. One large transfer is more
efficient than several smaller transfers. Run a bandwidth test to find the optimal transfer size.

• Only copy data back to host when necessary. Data written to global memory by a kernel can
be directly read by another kernel. Memory resources include PLRAM (small size but fast
access with lowest latency), HBM (moderate size and access speed with some latency), and
DDR (large size but slow access with high latency).

• Take advantage of the multiple global memory resources to evenly distribute bandwidth
across kernels.

• Maximize bandwidth usage between kernel and global memory by performing 512-bit wide
bursts.

• Cache data in local memory within the kernels. Accessing local memories is much faster than
accessing global memory.

• In the host application, use events and non-blocking transactions to launch multiple requests
in a parallel and overlapping manner.

• In the FPGA, use different kernels to take advantage of task-level parallelism and use multiple
CUs to take advantage of data-level parallelism to execute multiple tasks in parallel and
further increase performance.

• Within the kernels take advantage of tasks-level with dataflow and instruction-level
parallelism with loop unrolling and loop pipelining to maximize throughput.

• Some Xilinx FPGAs contain multiple partitions called super logic regions (SLRs). Keep the
kernel in the same SLR as the global memory bank that it accesses.

Section II: Developing Applications
Chapter 11: Best Practices for Acceleration with Vitis

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=160

• Use software and hardware emulation to validate your code frequently to make sure it is
functionally correct.

• Frequently review the Vitis Guidance report as it provides clear and actionable feedback
regarding deficiencies in your project.

Section II: Developing Applications
Chapter 11: Best Practices for Acceleration with Vitis

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=161

Section III

Building and Running the
Application

Revision History

The following table shows the revision history for this section.

Section Revision Summary
08/20/2020 Version 2020.1

Entire section No updates to this section.

06/24/2020 Version 2020.1

Entire section Editorial updates only. No technical content updates.

06/03/2020 Version 2020.1

Compiling Kernels with Vitis HLS Updated to Vitis HLS.

Packaging the System Added chapter.

Entire section Updated figures and tool commands.

Introduction

After the host program and the kernel code is written, you can build the application, which
includes building the host program and platform file (xclbin). The build process follows a
standard compilation and linking process for both the host program and the kernel code,
followed by packaging the outputs for use. However, the first step in building the application is to
identify the build target, indicating if you are building for test or simulation of the application, or
building for the target hardware. After building, both the host program and the FPGA binary, you
will be ready to run the application.

This section contains the following chapters:

• Setting up the Vitis Environment

• Build Targets

• Building the Host Program

• Building the Device Binary

• Packaging the System

• Directory Structure

Section III: Building and Running the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=162

• Running an Application

Section III: Building and Running the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=163

Chapter 12

Setting up the Vitis Environment
The Vitis unified software platform includes three elements that must be installed and configured
to work together properly: the Vitis core development kit, the Xilinx Runtime (XRT), and an
accelerator card such as the Alveo Data Center accelerator card. The requirements of installation
and configuration are described in Installation.

If you have the elements of the Vitis software platform installed, you need to setup the
environment to run in a specific command shell by running the following scripts (.csh scripts are
also provided):

 #setup XILINX_VITIS and XILINX_VIVADO variables
 source <Vitis_install_path>/settings64.sh
 #setup XILINX_XRT
 source /opt/xilinx/xrt/setup.sh

You can also specify the location of the available platforms for use with your Vitis IDE by setting
the following environment variable:

export PLATFORM_REPO_PATHS=<path to platforms>

TIP: The PLATFORM_REPO_PATHS  environment variable points to directories containing platform files
(.xpfm).

Section III: Building and Running the Application
Chapter 12: Setting up the Vitis Environment

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 164Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=164

Chapter 13

Build Targets
The build target of the Vitis tool defines the nature and contents of the FPGA binary (.xclbin)
created during compilation and linking. There are three different build targets: two emulation
targets used for validation and debugging purposes: software emulation and hardware emulation,
and the default system hardware target used to generate the FPGA binary (.xclbin) loaded
into the Xilinx device.

Compiling for an emulation target is significantly faster than compiling for the real hardware. The
emulation run is performed in a simulation environment, which offers enhanced debug visibility
and does not require an actual accelerator card.

Table 14: Comparison of Emulation Flows with Hardware Execution

Software Emulation Hardware Emulation Hardware Execution
Host application runs with a C/C++ or
OpenCL model of the kernels.

Host application runs with a simulated
RTL model of the kernels.

Host application runs with actual
hardware implementation of the
kernels.

Used to confirm functional correctness
of the system.

Test the host / kernel integration, get
performance estimates.

Confirm that the system runs correctly
and with desired performance.

Fastest build time supports quick
design iterations.

Best debug capabilities, moderate
compilation time with increased
visibility of the kernels.

Final FPGA implementation, long build
time with accurate (actual)
performance results.

Software Emulation
The main goal of software emulation is to ensure functional correctness of the host program and
kernels. For software emulation, both the host code and the kernel code are compiled to run on
the host x86 processor. The v++ compiler does the minimum transformation of the kernel code
to create the FPGA binary, in order to run the host program and kernel code together. The
software emulation flow can be used for algorithm refinement, debugging functional issues, and
letting developers iterate quickly through the code to make improvements. The programming
model of development through fast compile and run iterations is preserved.

In the context of the Vitis unified software platform, software emulation on a CPU is the same as
the iterative development process that is typical of CPU/GPU programming. In this type of
development style, a programmer continuously compiles and runs an application as it is being
developed.

Section III: Building and Running the Application
Chapter 13: Build Targets

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 165Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=165

TIP: For RTL kernels, software emulation can be supported if a C model is associated with the kernel. The
RTL kernel wizard packaging step provides an option to associate C model files with the RTL kernel for
support of software emulation flows.

As discussed in Vitis Compiler Command, the software emulation target is specified in the v++
command with the -t option:

v++ -t sw_emu ...

Hardware Emulation
The hardware emulation flow enables the programmer to check the functional correctness of the
RTL description of the FPGA binary synthesized from the C, C++, or OpenCL kernel code.

Each kernel is compiled to a hardware model (RTL). During hardware emulation, kernels are run in
the Vivado logic simulator, with a waveform viewer to examine the kernel design. In addition,
hardware emulation provides performance and resource estimates for the hardware
implementation.

In hardware emulation, compile and execution times are longer than for software emulation, but
it provides a detailed, cycle-accurate, view of kernel activity. Xilinx recommends that you use
small data sets for validation during hardware emulation to keep run times manageable.

IMPORTANT! The DDR memory model and the memory interface generator (MIG) model used in
hardware emulation are high-level simulation models. These models provide good simulation performance,
but only approximate latency values and are not cycle-accurate like the kernels. Therefore, performance
numbers shown in the profile summary report are approximate, and should be used for guidance and for
comparing relative performance between different kernel implementations.

As discussed in Vitis Compiler Command, the hardware emulation target is specified in the v++
command with the -t option:

v++ -t hw_emu ...

System Hardware Target
When the build target is the system hardware, v++ builds the FPGA binary for the Xilinx device
by running synthesis and implementation on the design. Therefore, it is normal for this build
target to take a longer period of time than generating either the software or hardware emulation
targets in the Vitis IDE. However, the final FPGA binary can be loaded into the hardware of the
accelerator card, or embedded processor platform, and the application can be run in its actual
operating environment.

Section III: Building and Running the Application
Chapter 13: Build Targets

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=166

As discussed in Vitis Compiler Command, the system hardware target is specified in the v++
command with the -t option:

v++ -t hw ...

Section III: Building and Running the Application
Chapter 13: Build Targets

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=167

Chapter 14

Building the Host Program
The host program, written in C/C++ using OpenCL™ API calls, is built using the GNU C++
compiler (g++) which is based on GNU compiler collection (GCC). Each source file is compiled to
an object file (.o) and linked with the Xilinx runtime (XRT) shared library to create the executable
which runs on the host CPU.

TIP: g++  supports many standard GCC options which are not documented here. For information refer to
the GCC Option Summary.

Compiling and Linking for x86
TIP: Setup the command shell or window as described in Setting up the Vitis Environment prior to running
the tools.

Each source file of the host application is compiled into an object file (.o) using the g++
compiler.

g++ ... -c <source_file1> <source_file2> ... <source_fileN>

The generated object files (.o) are linked with the Xilinx Runtime (XRT) shared library to create
the executable host program. Linking is performed using the -l option.

g++ ... -l <object_file1.o> ... <object_fileN.o>

Compiling and linking for x86 follows the standard g++ flow. The only requirement is to include
the XRT header files and link the XRT shared libraries.

When compiling the source code, the following g++ options are required:

• -I$XILINX_XRT/include/: XRT include directory.

• -I$XILINX_VIVADO/include: Vivado tools include directory.

• -std=c++11: Define the C++ language standard.

When linking the executable, the following g++ options are required:

• -L$XILINX_XRT/lib/: Look in XRT library.

Section III: Building and Running the Application
Chapter 14: Building the Host Program

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 168Send Feedback

https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html#Option-Summary
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=168

• -lOpenCL: Search the named library during linking.

• -lpthread: Search the named library during linking.

• -lrt: Search the named library during linking.

• -lstdc++: Search the named library during linking.

Note: In the Vitis Examples you may see the addition of xcl2.cpp source file, and the -I../libs/xcl2
include statement. These additions to the host program and g++ command provide access to helper
utilities used by the example code, but are generally not required for your own code.

Compiling and Linking for Arm
TIP: Setup the command shell or window as described in Setting up the Vitis Environment prior to running
the tools.

The host program (host.exe), is cross-compiled for an Arm processor, and linked using the
following two step process:

1. Compile the host.cpp into an object file (.o) using the GNU Arm cross-compiler version of
g++:

Note: aarch64 is used for Zynq® UltraScale+™ (A53) devices. aarch32 is used for Zynq-7000 SoC
(A9) and the tool chain is in a different location.

$XILINX_VITIS/gnu/aarch64/lin/aarch64-linux/bin/aarch64-linux-gnu-g++ \
-D__USE_XOPEN2K8 -I$SYSROOT/usr/include/xrt -I$XILINX_VIVADO/include \
-I$SYSROOT/usr/include -c -fmessage-length=0 -std=c++14 \
--sysroot=$SYSROOT -o src/host.o ../src/host.cpp

2. Link the object file with required libraries to build the executable application.

$XILINX_VITIS/gnu/aarch64/lin/aarch64-linux/bin/aarch64-linux-gnu-g++ \
-o host.exe src/host.o -lxilinxopencl -lpthread -lrt -lstdc++ -lgmp -
lxrt_core \
-L$SYSROOT/usr/lib/ --sysroot=$SYSROOT

IMPORTANT! The above examples rely on the use of $SYSROOT  environment variable that must be used
to specify the location of the sysroot  for your embedded platform.

The following are key elements to compiling the host code for an edge platform:

• Compilation:

• The cross compiler needed is the aarch64-linux-gnu-g++ found in the Vitis
installation hierarchy.

• The required include paths are:

○ $SYSROOT/usr/include

Section III: Building and Running the Application
Chapter 14: Building the Host Program

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 169Send Feedback

https://github.com/Xilinx/Vitis_Accel_Examples
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=169

○ $SYSROOT/usr/include/xrt

○ $XILINX_VIVADO/include

• Linking:

• $SYSROOT/usr/lib: Library paths location.

• xilinxopencl: XRT required library.

• pthread: XRT required library.

• rt: XRT required library.

• stdc++: XRT required library.

• gmp: XRT required library.

• xrt_core: XRT required library.

Section III: Building and Running the Application
Chapter 14: Building the Host Program

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=170

Chapter 15

Building the Device Binary
The kernel code is written in C, C++, OpenCL C, or RTL, and is built by compiling the kernel code
into a Xilinx object file (.xo), and linking the .xo files into a device binary file (.xclbin), as
shown in the following figure.

Figure 33: Device Build Process

OpenCL

v++ -c

.xo

C/C++

v++ -c

.xo

RTL

package_xo

.xo

C/C++

Vitis HLS

.xo

v++ --link
Target

Platform

.xclbin

X21155-052420

The process, as outlined above, has two steps:

1. Build the Xilinx object files from the kernel source code.

• For C, C++, or OpenCL kernels, the v++ -c command compiles the source code into
Xilinx object (.xo) files. Multiple kernels are compiled into separate .xo files.

• For RTL kernels, the package_xo command produces the .xo file to be used for linking.
Refer to RTL Kernels for more information.

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=171

• You can also create kernel object files (.xo) working directly in the Vitis HLS tool. Refer to
Compiling Kernels with Vitis HLS for more information.

2. After compilation, the v++ -l command links one or multiple kernel objects (.xo), together
with the hardware platform (.xsa), to produce the device binary (.xclbin).

TIP: The v++  command can be used from the command line, in scripts, or a build system like make, and
can also be used through the IDE as discussed in Section VII: Using the Vitis IDE.

Compiling Kernels with Vitis Compiler
IMPORTANT! Set up the command shell or window as described in Setting up the Vitis Environment prior
to running the tools.

The first stage in building the xclbin file is to compile the kernel code using the Xilinx Vitis
compiler. There are multiple v++ options that need to be used to correctly compile your kernel.
The following is an example command line to compile the vadd kernel:

v++ -t sw_emu --platform xilinx_u200_xdma_201830_2 -c -k vadd \
-I'./src' -o'vadd.sw_emu.xo' ./src/vadd.cpp

The various arguments used are described below. Note that some of the arguments are required.

• -t sw_emu: Specifies the build target as software emulation, as discussed in Build Targets.
Optional. The default is hw.

• --platform xilinx_u200_xdma_201830_2: Specifies the accelerator platform for the
build. This is required because runtime features, and the target platform are linked as part of
the FPGA binary. To compile a kernel for an embedded processor application, you simply
specify an embedded processor platform: --platform $PLATFORM_REPO_PATHS/
zcu102_base/zcu102_base.xpfm.

• -c: Compile the kernel. Required. The kernel must be compiled (-c) and linked (-l) in two
separate steps.

• -k vadd: Name of the kernel associated with the source files.

• ./src/vadd.cpp: Specify source files for the kernel. Multiple source files can be specified.
Required.

• -o'vadd.sw_emu.xo': Specify the shared object file output by the compiler. Optional.

Refer to Vitis Compiler Command for details of the various command line options. Refer to
Output Directories from the v++ Command to get an understanding of the location of various
output files.

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 172Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=172

Compiling Kernels with Vitis HLS
The use model described for the Vitis core development kit is a top-down approach, starting with
C/C++ or OpenCL code, and working toward compiled kernels. However, you can also directly
develop the kernel to produce a Xilinx® object (.xo) file to be paired for linking using v++ to
produce the .xclbin. This approach can be used for C/C++ kernels using the Vitis HLS tool,
which is the focus of this section, or RTL kernels using the Vivado Design Suite. Refer to RTL
Kernels for more information.

The approach of developing the kernel directly, either in RTL or C/C++, to produce an .xo file, is
sometimes referred to as the bottom-up flow. This allows you to validate kernel performance and
perform optimizations within the Vitis HLS tool, and export the Xilinx® object file for use in the
Vitis application acceleration development flow. Refer to the Vitis HLS Flow for more
information on using that tool.

Figure 34: Vitis HLS Bottom-Up Flow

K2
K2.xo
HLS

HLS Project

K1 K2.xo

Vitis IDE Project

Iterative Design Process
X21852-091319

The benefits of the Vitis HLS bottom-up flow can include:

• Design, validate, and optimize the kernel separately from the main application.

• Enables a team approach to design, with collaboration on host program and kernel
development.

• Specific kernel optimizations are preserved in the .xo file.

• A collection of .xo files can be used and reused like a library.

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 173Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=irn1582730075765.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=173

Creating Kernels in Vitis HLS
Generating kernels from C/C++ code for use in the Vitis core development kit follows the
standard Vitis HLS process. However, because the kernel is required to operate in the Vitis
software platform, the standard kernel requirements must be satisfied (see Kernel Properties).
Most importantly, the interfaces must be modeled as AXI memory interfaces, except for scalar
parameters which are mapped to an AXI4-Lite interface. Vitis HLS automatically defines the
interface ports to meet the standard kernel requirements when using the Vitis Bottom Up Flow
as described here.

The process for creating and compiling your HLS kernel is outlined briefly below. You should
refer to Creating a New Vitis HLS Project in the Vitis HLS Flow documentation for a more
complete description of this process.

1. Launch Vitis HLS to open the GUI, and specify File → New Project.

2. In the New Vitis HLS Project dialog box, specify the Project name, define the Location for the
project, and click Next.

3. In the Add/Remove files dialog box, click Add Files to add the kernel source code to the
project. Select Top Function to define the kernel function by clicking the Browse button, and
click Next when done.

4. You can specify a C-based simulation test bench if you have one available, by clicking Add
Files, or skip this by clicking Next.

TIP: As discussed in the Vitis HLS documentation, the use of a test bench is strongly recommended.

5. In the Solution Configuration dialog box, you must specify the Clock Period for the kernel.

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 174Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=creatingnewvitishlsproject.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=174

6. Choose the target platform by clicking the Browse button in the Part Selection field to open
the Device Selection dialog box. Select the Boards command, and select the target platform
for your compiled kernel, as shown below. Click OK to select the platform and return to the
Solution Configuration dialog box.

7. In the Solution Configuration dialog box, enable the Vitis Bottom Up Flow check box, and
click Finish to complete the process and create your HLS kernel project.

IMPORTANT! You must enable the Vitis Bottom Up Flow to generate the Xilinx object (.xo) file from
the project.

When the HLS project has been created you can Run C-Synthesis to compile the kernel code.
Refer to the Vitis HLS documentation for a complete description of the HLS tool flow.

After synthesis is completed, the kernel can be exported as an .xo file for use in the Vitis core
development kit. The export command is available through the Solution → Export RTL command
from the main menu.

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 175Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=175

Specify the file location, and the kernel is exported as a Xilinx object .xo file.

The (.xo) file can be used as an input file during the v++ linking process. Refer to Linking the
Kernels for more information. You can also add it to an application project in the Vitis integrated
design environment (IDE), as discussed in Creating a Vitis IDE Project.

However, keep in mind that HLS kernels, created in the bottom-up flow described here, have
certain limitations when used in the Vitis application acceleration development flow. Software
emulation is not supported for applications using HLS kernels, because duplicated header file
dependencies can create issues. GDB debug is not supported in the hardware emulation flow for
HLS kernels, or RTL kernels.

Vitis HLS Script for Creating Kernels

If you run HLS synthesis through Tcl scripts, you can edit the following script to create HLS
kernels as previously described:

Define variables for your HLS kernel:
set projName <proj_name>
set krnlName <kernel_name>
set krnlFile <kernel_source_code>
set krnlTB <kernel_test_bench>
set krnlPlatform <target_part>
set path <path_to_project>

#Script to create and output HLS kernel
open_project $projName
set_top $krnlName
add_files $krnlFile
add_files -tb $krnlTB
open_solution "solution1"
set_part $krnlPlatform
create_clock -period 10 -name default
config_flow -target vitis
csim_design
csynth_design
cosim_design
export_design -flow impl -format xo -output "./hlsKernel/hlsKernel.xo"

Run the HLS kernel script by using the following command after setting up your environment as
discussed in Setting up the Vitis Environment.

vitis_hls -f <hls_kernel_script>.tcl

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 176Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=176

Packaging RTL Kernels with package_xo
Kernels written in RTL are compiled in the Vivado tool using the package_xo command line
utility which generates a Xilinx object file (.xo) which can subsequently used by the v++
command, during the linking stage. (See package_xo Command.) The process for creating RTL
kernels, and using the package_xo command to generate an .xo file is described in RTL
Kernels.

Linking the Kernels
TIP: Set up the command shell or window as described in Setting up the Vitis Environment prior to running
the tools.

The kernel compilation process results in a Xilinx object file (.xo) whether the kernel is written in
C/C++, OpenCL C, or RTL. During the linking stage, .xo files from different kernels are linked
with the platform to create the FPGA binary container file (.xclbin) used by the host program.

Similar to compiling, linking requires several options. The following is an example command line
to link the vadd kernel binary:

v++ -t sw_emu --platform xilinx_u200_xdma_201830_2 --link vadd.sw_emu.xo \
-o'vadd.sw_emu.xclbin' --config ./connectivity.cfg

This command contains the following arguments:

• -t sw_emu: Specifies the build target. When linking, you must use the same -t and --
platform arguments as specified when the input file (.xo) was compiled.

• --platform xilinx_u200_xdma_201830_2: Specifies the platform to link the kernels
with. To link the kernels for an embedded processor application, you simply specify an
embedded processor platform: --platform $PLATFORM_REPO_PATHS/zcu102_base/
zcu102_base.xpfm

• --link: Link the kernels and platform into an FPGA binary file (xclbin).

• vadd.sw_emu.xo: Input object file. Multiple object files can be specified to build into
the .xclbin.

• -o'vadd.sw_emu.xclbin': Specify the output file name. The output file in the link stage
will be an .xclbin file. The default output name is a.xclbin

• --config ./connectivity.cfg: Specify a configuration file that is used to provide v++
command options for a variety of uses. Refer to Vitis Compiler Command for more
information on the --config option.

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 177Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=177

TIP: Refer to Output Directories from the v++ Command to get an understanding of the location of various
output files.

Beyond simply linking the Xilinx object files (.xo), the linking process is also where important
architectural details are determined. In particular, this is where the number of compute unit (CUs)
to instantiate into hardware is specified, connections from kernel ports to global memory are
assigned, and CUs are assigned to SLRs. The following sections discuss some of these build
options.

Creating Multiple Instances of a Kernel
By default, the linker builds a single hardware instance from a kernel. If the host program will
execute the same kernel multiple times, due to data processing requirements for instance, then it
must execute the kernel on the hardware accelerator in a sequential manner. This can impact
overall application performance. However, you can customize the kernel linking stage to
instantiate multiple hardware compute units (CUs) from a single kernel. This can improve
performance as the host program can now make multiple overlapping kernel calls, executing
kernels concurrently by running separate compute units.

Multiple CUs of a kernel can be created by using the connectivity.nk option in the v++
config file during linking. Edit a config file to include the needed options, and specify it in the v++
command line with the --config option, as described in Vitis Compiler Command.

For example, for the vadd kernel, two hardware instances can be implemented in the config file
as follows:

[connectivity]
#nk=<kernel name>:<number>:<cu_name>.<cu_name>...
nk=vadd:2

Where:

• <kernel_name>: Specifies the name of the kernel to instantiate multiple times.

• <number>: The number of kernel instances, or CUs, to implement in hardware.

• <cu_name>.<cu_name>...: Specifies the instance names for the specified number of
instances. This is optional, and the CU name will default to kernel_1 when it is not specified.

Then the config file is specified on the v++ command line:

v++ --config vadd_config.txt ...

In the vadd example above, the result is two instances of the vadd kernel, named vadd_1 and
vadd_2.

TIP: You can check the results by using the xclbinutil  command to examine the contents of the
xclbin  file. Refer to xclbinutil Utility.

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 178Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=178

The following example results in three CUs of the vadd kernel, named vadd_X, vadd_Y, and
vadd_Z in the xclbin binary file:

[connectivity]
nk=vadd:3:vadd_X.vadd_Y.vadd_Z

Mapping Kernel Ports to Global Memory
The link phase is when the memory ports of the kernels are connected to memory resources
which include DDR, HBM, and PLRAM. By default, when the xclbin file is produced during the
v++ linking process, all kernel memory interfaces are connected to the same global memory bank
(or gmem). As a result, only one kernel interface can transfer data to/from the memory bank at
one time, limiting the performance of the application due to memory access.

If the FPGA contains only one global memory bank, this is the only available approach. However,
all of the Alveo Data Center accelerator cards contain multiple global memory banks. During the
linking stage, you can specify which global memory bank each kernel port (or interface) is
connected to. Proper configuration of kernel to memory connectivity is important to maximize
bandwidth, optimize data transfers, and improve overall performance. Even if there is only one
compute unit in the device, mapping its input and output ports to different global memory banks
can improve performance by enabling simultaneous accesses to input and output data.

IMPORTANT! Up to 15 kernel ports can be connected to a single global memory bank. Therefore, if there
are more than 15 memory interfaces, then you must explicitly perform the memory mapping as described
here, using the --conectivity.sp  option to distribute connections across different memory banks.

Specifying the kernel port to memory bank mapping requires the following steps:

1. Specify the kernel interface with different bundle names as discussed in Kernel Interfaces.

2. During v++ linking, use the connectivity.sp option in a config file to map the kernel port
to the desired memory bank.

To map the kernel ports to global memory banks using the connectivity.sp option of the v+
+ config file, use the following steps.

1. Starting with the kernel code example from Kernel Interfaces:

void cnn(int *pixel, // Input pixel
 int *weights, // Input Weight Matrix
 int *out, // Output pixel
 ... // Other input or Output ports

#pragma HLS INTERFACE m_axi port=pixel offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=weights offset=slave bundle=gmem1
#pragma HLS INTERFACE m_axi port=out offset=slave bundle=gmem

Note that the memory interface inputs pixel and weights are assigned different bundle
names in the example above. This creates two separate ports that can be assigned to
separate global memory banks.

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 179Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=179

IMPORTANT! You must specify bundle=  names using all lowercase characters to be able to assign
it to a specific memory bank using the --connectivity.sp  option.

2. During v++ linking, the separate ports can be mapped to different global memory banks. Edit
a config file to include the --connectivity.sp option, and specify it in the v++ command
line with the --config option, as described in Vitis Compiler Command.

For example, for the cnn kernel shown above, the connectivity.sp option in the config
file would be as follows:

[connectivity]
#sp=<compute_unit_name>.<interface_name>:<bank name>
sp=cnn_1.m_axi_gmem:DDR[0]
sp=cnn_1.m_axi_gmem1:DDR[1]

Where:

• <compute_unit_name> is an instance name of the CU as determined by the
connectivity.nk option, described in Creating Multiple Instances of a Kernel, or is
simply <kernel_name>_1 if multiple CUs are not specified.

• <interface_name> is the name of the kernel port as defined by the HLS INTERFACE
pragma, including m_axi_ and the bundle name. In the cnn kernel above, the ports
would be m_axi_gmem and m_axi_gmem1.

TIP: If the port is not specified as part of a bundle, then the <interface_name>  is simply the
specified port  name, without the m_axi_  prefix.

• <bank_name> is denoted as DDR[0], DDR[1], DDR[2], and DDR[3] for a platform with
four DDR banks. Some platforms also provide support for PLRAM, HBM, HP or MIG
memory, in which case you would use PLRAM[0], HBM[0], HP[0] or MIG[0]. You can use
the platforminfo utility to get information on the global memory banks available in a
specified platform. Refer to platforminfo Utility for more information.

IMPORTANT! The customized bank connection needs to be reflected in the host code as well, as
described in Assigning DDR Bank in Host Code.

Specify Streaming Connections between Compute
Units
The Vitis core development kit supports streaming data transfer between two kernels, allowing
data to move directly from one kernel to another without having to transmit back through global
memory. However, the process has to be implemented in the kernel code itself, as described in
Streaming Data Transfers Between Kernels (K2K), and also specified during the kernel build
process.

Note: This also supports streaming connections to/from free running kernels as described in Free-Running
Kernel.

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=180

The streaming data ports of kernels can be connected during v++ linking using the --
connectivity.sc command. This command can be specified at the command line, or from a
config file that is specified using the --config option, as described in Vitis Compiler Command.

To connect the streaming output port of a producer kernel to the streaming input port of a
consumer kernel, setup the connection in the v++ config file using the
connectivity.stream_connect option as follows:

[connectivity]
#stream_connect=<cu_name>.<output_port>:<cu_name>.<input_port>:
[<fifo_depth>]
stream_connect=vadd_1.stream_out:vadd_2.stream_in

Where:

• <cu_name> is an instance name of the CU as determined by the connectivity.nk option,
described in Creating Multiple Instances of a Kernel.

• <output_port> or <input_port> is the streaming port defined in the producer or
consumer kernel as described in Streaming Kernel Coding Guidelines, or as described in
Coding Guidelines for Free-Running Kernels.

• [:<fifo_depth>] inserts a FIFO of the specified depth between the two streaming ports
to prevent stalls. The value is specified as an integer.

Assigning Compute Units to SLRs
Currently, the Xilinx devices on Alveo Data Center accelerator cards use stacked silicon devices
with several Super Logic Regions (SLRs) to provide device resources, including global memory.
When assigning ports to global memory banks, as described in Mapping Kernel Ports to Global
Memory, it is best that the CU instance is assigned to the same SLR as the global memory it is
connected to. In this case, you will want to manually assign the kernel instance, or CU into the
same SLR as the global memory to ensure the best performance.

A CU can be assigned into an SLR during the v++ linking process using the connectivity.slr
option in a config file, and specified with the --config option in the v++ command line. The
syntax of the connectivity.slr option in the config file is as follows:

[connectivity]
#slr=<compute_unit_name>:<slr_ID>
slr=vadd_1:SLR2
slr=vadd_2:SLR3

where:

• <compute_unit_name> is an instance name of the CU as determined by the
connectivity.nk option, described in Creating Multiple Instances of a Kernel, or is simply
<kernel_name>_1 if multiple CUs are not specified.

• <slr_ID> is the SLR number to which the CU is assigned, in the form SLR0, SLR1,...

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=181

The assignment of a CU to an SLR must be specified for each CU separately, but is not required.
In the absence of an SLR assignment, the v++ linker is free to assign the CU to any SLR.

After editing the config file to include the SLR assignments, you can use it during the v++ linking
process by specifying the config file using the --config option:

v++ -l --config config_slr.txt ...

Managing FPGA Synthesis and Implementation
Results in the Vivado Tool
Introduction

TIP: This topic requires an understanding of the Vivado Design Suite tools and design methodology as
described in UltraFast Design Methodology Guide for the Vivado Design Suite (UG949).

In most cases, the Vitis environment completely abstracts away the underlying process of
synthesis and implementation of the programmable logic region, as the CUs are linked with the
hardware platform and the FPGA binary (xclbin) is generated. This removes the application
developer from the typical hardware development process, and the need to manage constraints
such as logic placement and routing delays. The Vitis tool automates much of the FPGA
implementation process.

However, in some cases you might want to exercise some control over the synthesis and
implementation processes deployed by the Vitis compiler, especially when large designs are
being implemented. Towards this end, the Vitis tool offers some control through specific options
that can be specified in a v++ configuration file, or from the command line. The following are
some of the ways you can interact with and control the Vivado synthesis and implementation
results.

• Using the --vivado option to manage the Vivado tool.

• Using the -to_step and -from_step options to run the compilation or linking process to a
specific step, perform some manual intervention on the design, and resume from that step.

• Interactively editing the Vivado project, and using the results for generating the FPGA binary.

Using the --vivado and --advanced Options

Using the --vivado option, as described in --vivado Options, and the --advanced option as
described in --advanced Options, you can perform a number of interventions on the standard
Vivado synthesis or implementation.

1. Pass Tcl scripts, with custom design constraints or scripted operations.

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 182Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=182

You can create Tcl scripts to assign XDC design constraints to objects in the design, and pass
these Tcl scripts to the Vivado tools using the PRE and POST Tcl script properties of the
synthesis and implementation steps. For more information on Tcl scripting, refer to the Vivado
Design Suite User Guide: Using Tcl Scripting (UG894). While there is only one synthesis step,
there are a number of implementation steps as described in the Vivado Design Suite User
Guide: Implementation (UG904). You can assign Tcl scripts for the Vivado tool to run before
the step (PRE), or after the step (POST). The specific steps you can assign Tcl scripts to
include the following: SYNTHESIS, INIT_DESIGN, OPT_DESIGN, PLACE_DESIGN,
ROUTE_DESIGN, WRITE_BITSTREAM.

TIP: There are also some optional steps that can be enabled using the --vivado.prop
run.impl_1.steps.phys_opt_design.is_enabled=1  option. When enabled, these steps
can also have Tcl PRE and POST scripts.

An example of the Tcl PRE and POST script assignments follow:

--vivado.prop run.impl_1.STEPS.PLACE_DESIGN.TCL.PRE=/…/xxx.tcl

In the preceding example a script has been assigned to run before the PLACE_DESIGN step.
The command line is broken down as follows:

• --vivado is the v++ command-line option to specify directives for the Vivado tools.

• prop keyword to indicate you are passing a property setting.

• run. keyword to indicate that you are passing a run property.

• impl_1. indicates the name of the run.

• STEPS.PLACE_DESIGN.TCL.PRE indicates the run property you are specifying.

• /.../xx.tcl indicates the property value.

TIP: Both the --advanced  and --vivado  options can be specified on the v++  command line, or
in a configuration file specified by the --config  option. The example above shows the command
line use, and the following example shows the config file usage. Refer to Vitis Compiler Configuration
File for more information.

2. Setting properties on run, file, and fileset design objects.

This is very similar to passing Tcl scripts as described above, but in this case you are passing
values to different properties on multiple design objects. For example, to use a specific
implementation strategy such as Performance_Explore, you can define the properties as
shown below:

[vivado]
prop=run.impl_1.STEPS.OPT_DESIGN.ARGS.DIRECTIVE=Explore
prop=run.impl_1.STEPS.PLACE_DESIGN.ARGS.DIRECTIVE=Explore
prop=run.impl_1.STEPS.PHYS_OPT_DESIGN.IS_ENABLED=true
prop=run.impl_1.STEPS.PHYS_OPT_DESIGN.ARGS.DIRECTIVE=Explore
prop=run.impl_1.STEPS.ROUTE_DESIGN.ARGS.DIRECTIVE=Explore

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 183Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug904-vivado-implementation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=183

In the example above, the Explore value is assigned to the STEPS.XXX.DIRECTIVE
property of the implementation run. Note the syntax for defining these properties is:

<object>.<instance>.property=<value>

Where:

• <object> can be a design run, a file, or a fileset object.

• <instance> indicates a specific instance of the object.

• <property> specifies the property to assign.

• <value> defines the value of the property.

3. Passing parameters to the tool to control processing.

The --vivado option also allows you to pass parameters to the Vivado tools. The
parameters are used to configure the tool features or behavior prior to launching the tool.
The syntax for specifying a parameter uses the following form:

--vivado.param <object><parameter>=<value>

The keyword param indicates that you are passing a parameter for the Vivado tools, rather
than a property for a design object. You must also define the <object> it applies to, the
<parameter> that you are specifying, and the <value> to assign it.

In the following example project indicates the current Vivado project,
writeIntermedateCheckpoints is the parameter being passed, and the value is 1,
which enables this boolean parameter.

--vivado.param project.writeIntermediateCheckpoints=1

4. Managing the reports generated during synthesis and implementation.

IMPORTANT! You must also specify --save-temps  on the v++  command line when customizing
the reports generated by the Vivado tool in order to preserve the temporary files created during
synthesis and implementation, including any generated reports.

You may also want to generate or save more than the standard reports provided by the
Vivado tools when run as part of the Vitis tools build process. You can customize the reports
generated using the --advanced.misc option as follows:

[advanced]
misc=report=type report_utilization name
synth_report_utilization_summary steps {synth_design} runs {__KERNEL__}
options {}
misc=report=type report_timing_summary name
impl_report_timing_summary_init_design_summary steps {init_design} runs
{impl_1} options {-max_paths 10}
misc=report=type report_utilization name
impl_report_utilization_init_design_summary steps {init_design} runs
{impl_1} options {}
misc=report=type report_control_sets name
impl_report_control_sets_place_design_summary steps {place_design} runs
{impl_1} options {-verbose}

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 184Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=184

misc=report=type report_utilization name
impl_report_utilization_place_design_summary steps {place_design} runs
{impl_1} options {}
misc=report=type report_io name impl_report_io_place_design_summary
steps {place_design} runs {impl_1} options {}
misc=report=type report_bus_skew name
impl_report_bus_skew_route_design_summary steps {route_design} runs
{impl_1} options {-warn_on_violation}
misc=report=type report_clock_utilization name
impl_report_clock_utilization_route_design_summary steps {route_design}
runs {impl_1} options {}

The syntax of the command line is explained using the following example:

misc=report=type report_bus_skew name
impl_report_bus_skew_route_design_summary steps {route_design} runs
{impl_1} options {-warn_on_violation}

• misc=report=: Specifies the --advanced.misc option as described in --advanced
Options, and defines the report configuration for the Vivado tool. The rest of the
command line is specified in name/value pairs, reflecting the options of the
create_report_config Tcl command as described in Vivado Design Suite Tcl Command
Reference Guide (UG835).

• type report_bus_skew: Relates to the -report_type argument, and specifies the
type of the report as the report_bus_skew. Most of the report_* Tcl commands can
be specified as the report type.

• name impl_report_bus_skew_route_design_summary: Relates to the -
report_name argument, and specifies the name of the report. Note this is not the file
name of the report, and generally this option can be skipped as the report names will be
auto-generated by the tool.

• steps {route_design}: Relates to the -steps option, and specifies the synthesis
and implementation steps that the report applies to. The report can be specified for use
with multiple steps to have the report regenerated at each step, in which case the name of
the report will be automatically defined.

• runs {impl_1}: Relates to the -runs option, and specifies the name of the design runs
to apply the report to.

• options {-warn_on_violation}: Specifies various options of the report_* Tcl
command to be used when generating the report. In this example, the -
warn_on_violation option is a feature of the report_bus_skew command.

IMPORTANT! There is no error checking to ensure the specified options are correct and applicable
to the report type specified. If you indicate options that are incorrect the report will return an error
when it is run.

Running --to_step or --from_step

IMPORTANT! The --to_step  and --from_step  options are incremental build options that require
you to use the same project directory when launching the Vitis compiler using --from_step  to resume
the build as you specified when using --to_step  to start the build.

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 185Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=185

The Vitis compiler lets you specify a step to run to that lets you stop the build process after
completing the specified step, manually intervene in the design or files in some way, and then
rerun the build specifying a step the build should start from. The commands to do this are the --
to_step, to run the build process through that step, and --from_step to resume the build
from the specified step of the Vitis compiler, as described in Vitis Compiler General Options.

The tool also provides a --list_steps option to list the available steps for the compilation or
linking processes of a specific build target. For example, the list of steps for the link process of
the hardware build can be found by:

v++ --list_steps --target hw --link

This command returns a number of steps, both default steps and optional steps that the Vitis
compiler goes through during the linking process of the hardware build. Some of the default
steps include: system_link, vpl, vpl.create_project, vpl.create_bd,
vpl.generate_target, vpl.synth, vpl.impl.opt_design,
vpl.impl.place_design, vpl.impl.route_design, and
vpl.impl.write_bitstream.

Optional steps include: vpl.impl.power_opt_design,
vpl.impl.post_place_power_opt_design, vpl.impl.phys_opt_design, and
vpl.impl.post_route_phys_opt_design.

TIP: An optional step must be enabled before specifying it with --from_step  or --to_step. For
example, to enable PHYS_OPT_DESIGN step, use the following config file content:

[vivado]
prop=run.impl_1.steps.phys_opt_design.is_enabled=1

Launching the Vivado IDE for Interactive Design

With the --to_step command, you can launch the build process to Vivado synthesis, for
example, and then launch the Vivado IDE on the project to manually place and route the design.
To do this you would use the following command syntax:

v++ --target hw --link --to_step vpl.synth --save-temps --platform
<PLATFORM_NAME> <XO_FILES>

TIP: As shown in the example above, you must also specify --save-temps  when using --to_step  to
preserve any temporary files required by the build process.

This command specifies the link process of the hardware build, runs the build through the
synthesis step, and saves the temporary files produced by the build process.

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=186

You can launch the Vivado tool directly on the project built by the Vitis compiler, which you can
find at _x/link/vivado/vpl/prj in your build directory. When invoking the Vivado IDE in
this mode, you can open the synthesis or implementation run to manage and modify the project.
You can change the run details as needed to close timing and try different approaches to
implementation. You can save the results to a design checkpoint (DCP) to use in the Vitis
environment to generate the FPGA binary.

After saving the DCP from within the Vivado IDE, you can close the tool and return to the Vitis
environment. Use the --reuse_impl option to use a previously implemented DCP file in the v
++ command line to generate the xclbin.

IMPORTANT! The --reuse_impl  option is an incremental build option that requires you to use the
same project directory when resuming the Vitis compiler with --reuse_impl  that you specified when
using --to_step  to start the build.

The following command completes the linking process by using the specified DCP file from the
Vivado tool to create the project.xclbin from the input files.

v++ --link --platform <PLATFORM_NAME> -o'project.xclbin' project.xo --
reuse_impl ./_x/link/vivado/routed.dcp

Additional Vivado Options

Some additional switches that can be used in the v++ command line or config file include the
following:

• --export_script/--custom_script edit and use an HLS Tcl script to modify the
compilation process.

• --interactive allows the Vivado IDE to be launched from within the v++ environment,
with the project loaded.

• --remote_ip_cache specify a remote IP cache directory for Vivado synthesis.

• --no_ip_cache turn off the IP cache for Vivado synthesis. This causes all IP to be
resynthesized as part of the build process, scrubbing out cached data.

Controlling Report Generation
The v++ -R option (or --report_level) controls the level of information to report during
compilation or linking for hardware emulation and system targets. Builds that generate fewer
reports will typically run more quickly.

The command line option is as follows:

$ v++ -R <report_level>

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=187

Where <report_level> is one of the following options:

• -R0: Minimal reports and no intermediate design checkpoints (DCP).

• -R1: Includes R0 reports plus:

○ Identifies design characteristics to review for each kernel (report_failfast).

○ Identifies design characteristics to review for the full post-optimization design.

○ Saves post-optimization design checkpoint (DCP) file for later examination or use in the
Vivado Design Suite.

TIP: report_failfast  is a utility that highlights potential device usage challenges, clock
constraint problems, and potential unreachable target frequency (MHz).

• -R2: Includes R1 reports plus:

○ Includes all standard reports from the Vivado tools, including saved DCPs after each
implementation step.

○ Design characteristics to review for each SLR after placement.

• -Restimate: Forces Vitis HLS to generate a System Estimate report, as described in System
Estimate Report.

TIP: This option is useful for the software emulation build (-t sw_emu).

Section III: Building and Running the Application
Chapter 15: Building the Device Binary

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 188Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=188

Chapter 16

Packaging the System
Introduction

After compiling and linking your kernel code to build the .xclbin, you need to package the
device binary, along with any required supporting files, to build a package that can be run for
software or hardware emulation, or can be booted and run on the hardware device. The v++ -
package step, or -p, packages the final product at the end of the v++ compile and link process.
This is a required step for all embedded processor platforms.

As described in --package Options, this command lets you package your design and define
various files required for booting and configuring the Xilinx device for use during emulation or in
production systems. It collects the various elements to create an SD card, or other means to
program the device, to define the operating system, and to load the application and kernel code.

Packaging for Data Center Platforms
For Alveo Data Center accelerator cards, the --package command generally has little effect.
For software emulation, hardware emulation, and hardware builds, if the output option is
specified, the tool copies the input .xclbin file to the output:

v++ -p -t [sw_emu | hw_emu | hw] --platform <platform> input.xclbin [-o
output.xclbin]

Packaging for Embedded Platforms
For embedded platforms, the --package command supports Zynq devices.

For software and hardware emulation, the command takes the .xclbin file as input, produces a
script to launch emulation (launch_sw_emu.sh or launch_hw_emu.sh), and writes needed
support files to the specified output folder.

For hardware builds, the --package command creates an sd_card folder, or the QSPI.img
depending on the boot mode specified with the --package.boot_mode option.

Section III: Building and Running the Application
Chapter 16: Packaging the System

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 189Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=189

The --package command has a variety of options for use with the different platforms and build
targets supported by the Vitis tools. In the Vitis IDE, the package process is automated and the
tool creates the required files as needed. However, in the command line flow, you must specify
the v++ --package command or add the [package] tag in the config file with the right
options for the job. The following is an example command for hardware emulation that runs the
package process for a ZCU104 based application:

v++ -p -t hw_emu --platform xilinx_zcu104_base_202010_1 --save-temps \
./krnl.xclbin --config package.cfg

TIP: For bare metal ELF files running on PS cores, you should also add the following option to the
command line:

--package.ps_elf <elf>,<core>

Where, the --config package.cfg option specifies a configuration file for the Vitis compiler
with the various options specified for the package process. The following is the content of an
example configuration file:

[package]
out_dir=sd_card
boot_mode=sd
image_format=ext4
rootfs=/tmp/platforms/sw/zynqmp/xilinx-zynqmp-common-v2020.1/rootfs.ext4.gz
sd_file=/tmp/platforms/sw/zynqmp/xilinx-zynqmp-common-v2020.1/Image
sd_file=host.elf
sd_file=krnl.xclbin
sd_file=launch_app.sh

This creates an output folder called sd_card, that contains all of the files needed to run
hardware emulation for the application, modeling the boot process of an sd_card. For hardware
builds, it contains the files required for creating an SD card to boot the device.

After creating the sd_card folder, copy the contents to an SD card to create the boot image.

Note: On Windows OS you must use a third-party tool, such as Etcher, to write on the SD card for use in
booting the Xilinx device.

Section III: Building and Running the Application
Chapter 16: Packaging the System

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 190Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=190

Chapter 17

Directory Structure
The directory structure generated by the command-line flow, and the IDE flow, has been
organized to allow you to easily find and access files. By navigating the various compile, link,
logs, and reports directories, you can easily find generated files. Similarly, each kernel will also
have a directory structure created.

Output Directories from the v++ Command
When using v++ on the command line, by default it creates a directory structure during compile
and link. The .xo and .xclbin are always generated in the working directory. All the
intermediate files are created under the _x directory (default name of the temp_dir).

The following example shows the generated directory structure for two v++ compile runs (k1
and k2) and one v++ link (design.xclbin). The k1.xo, k2.xo and design.xclbin files are
located in the working directory. The _x directory contains the associated k1 and k2 kernel
compile sub-directories. The link, logs, and reports directories contain the respective
information on the builds.

Section III: Building and Running the Application
Chapter 17: Directory Structure

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 191Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=191

Figure 35: Command Line Directory Structure

You can optionally change the directory structure using the following v++ options:

--log_dir <dir_name>

-–report_dir <dir_name>

-–temp_dir <dir_name>

See Vitis Compiler Command for additional details.

Output Directories from the Vitis IDE
The default directory structure of the output files from the Vitis IDE flow, though similar, is not
identical to that created by the command-line flow. The following example shows the directory
structure automatically generated by the Vitis IDE for two kernels, k1 and k2, compiled and
linked by the v++ command. The k1.xo, k2.xo, and design.xclbin files are located in the
working directory. The _x directory contains the associated k1 and k2 kernel compile sub-
directories. Again, the link, logs, and reports directories contain the respective information on the
builds.

Section III: Building and Running the Application
Chapter 17: Directory Structure

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 192Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=192

Figure 36: GUI Directory Structure

The Vitis IDE manages the creation of the directory structure using the following v++ command
options, which can be specified through the GUI:

–-temp_dir

–-report_dir

–-log_dir

Refer to Section VII: Using the Vitis IDE for more information.

Section III: Building and Running the Application
Chapter 17: Directory Structure

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 193Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=193

Chapter 18

Running an Application
TIP: Set up the command shell or window as described in Setting up the Vitis Environment prior to running
the builds.

As explained in Build Targets, there are three different types of builds you can target in the Vitis
core development kit: software emulation, hardware emulation, and the system hardware build.
Each of these build targets offers advantages, and limitations, and it is recommended that you
work your way through building and running each of these targets.

• Software emulation: The software emulation build compiles and links quickly, runs on the x86
system as a compiled C-model, and lets you quickly iterate on both the host code and kernel
logic.

• Hardware emulation: The host program runs as before, but the kernel code is compiled into an
RTL behavioral model which is run in the Vivado simulator. This build and run loop takes
longer but provides a cycle-accurate view of the kernel logic.

• System hardware: The host program runs as before, but this time connected with the actual
accelerator card, running the FPGA binary produced for your application. The performance
data and results you capture here are the actual performance of your accelerated application.
Yet this run might still reveal opportunities to optimize your design.

Running Emulation Builds

1. Edit the xrt.ini file required by XRT. This is optional, but recommended.

As described in xrt.ini File, the file specifies various parameters to control debugging,
profiling, and message logging in XRT when running the host application and kernel
execution. This enables the runtime to capture debugging and profile data as the application
is running. The Emulation group in the xrt.ini provides features that affect your
emulation run.

TIP: Be sure to use the v++ -g option when compiling your kernel code for emulation mode.

2. Create the emconfig.json file required for running emulation as described in emconfigutil
Utility. This is required for running hardware or software emulation.

Section III: Building and Running the Application
Chapter 18: Running an Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 194Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=194

The emulation configuration file, emconfig.json, is generated from the specified platform
using the emconfigutil command, and provides information used by the Xilinx runtime
library during emulation. The following example creates the emconfig.json file for the
specified target platform:

emconfigutil --platform xilinx_u200_xdma_201830_2

TIP: It is mandatory to have an up-to-date .json  file for running emulation on your target platform.

3. Set the XCL_EMULATION_MODE environment variable to sw_emu (software emulation) or
hw_emu (hardware emulation) as appropriate. This changes the application execution to
emulation mode. In emulation mode, the runtime looks for the emconfig.json file in the
same directory as the host executable, and reads in the target configuration for the emulation
runs. This is also required for emulation runs.

Use the following syntax to set the environment variable for C target platform:

setenv XCL_EMULATION_MODE sw_emu

Bash target platform:

export XCL_EMULATION_MODE=sw_emu

IMPORTANT! The emulation targets will not run if the XCL_EMULATION_MODE  environment
variable is not properly set.

4. For Embedded platforms, launch the emulation environment (QEMU).

TIP: This step is only required for emulating the Arm processor environment of platforms using Xilinx
embedded devices such as Zynq UltraScale+ MPSoC.

As explained in Packaging the System, the Vitis compiler creates a script for setting up and
launching the QEMU emulation environment called launch_sw_emu.sh or
launch_hw_emu.sh. You must use this script from the command line to run the application.

5. Run the application.

With the runtime initialization (xrt.ini), emulation configuration file (emconfig.json),
and the XCL_EMULATION_MODE environment set, run the host executable with the desired
command line argument, as you normally would run it if it was not an emulation run.. For
example:

./host.exe kernel.xclbin

TIP: This command line assumes that the host program is written to take the name of the xclbin 
file as an argument, as most Vitis examples and tutorials do. However, your application may have the
name of the xclbin  file hard-coded into the host program, or may require a different approach to
running the application.

Section III: Building and Running the Application
Chapter 18: Running an Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 195Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=195

Running the System Hardware Build

Running the system hardware build will let you see the actual application running on an
accelerator card, such as the Alveo Data Center accelerator card, or perhaps a prototype of an
embedded processor platform. In order to use the accelerator card, you must have it installed as
described in Getting Started with Alveo Data Center Accelerator Cards (UG1301).

When running on hardware, you can still have XRT configured with the xrt.ini file to capture
debugging and profile data as the application is running. In this case, the Debug and Runtime
sections of the file might be of interest.

Beyond the installation of the accelerator and XRT, and configuring the xrt.ini file, you must
unset the XCL_EMULATION_MODE environment variable prior to running the system hardware
build. If you had it set for running emulation, you will need to unset it now.

With the XCL_EMULATION_MODE environment unset, run the application on hardware as
follows:

./host.exe kernel.xclbin

Section III: Building and Running the Application
Chapter 18: Running an Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 196Send Feedback

https://www.xilinx.com/cgi-bin/docs/bkdoc?v=latest;k=accelerator-cards;d=ug1301-getting-started-guide-alveo-accelerator-cards.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=196

Section IV

Profiling, Optimizing, and
Debugging the Application

Revision History

The following table shows the revision history for this section.

Section Revision Summary
08/20/2020 Version 2020.1

Entire section No updates to this section.

06/24/2020 Version 2020.1

Entire section Editorial updates only. No technical content updates.

06/03/2020 Version 2020.1

Emulation Debug for Embedded Processors Added information emulation debug in embedded processors.

Hardware Debug for Embedded Processors Added information hardware debug in embedded processors.

Enabling Profiling in Your Application Added section.

Guidance Added more information about the types of guidance available.

HLS Report Updated for Vitis HLS.

Profile Summary Report Added more information about generating and interpreting the
profile summary report.

Low Overhead Profiling Added section.

Enabling Kernels for Debugging with Chipscope Added information about the AXI Protocol Checker.

Debugging on Embedded Processor Platforms Added section.

General updates Updated figures and tool commands.

Introduction

Running the system, either in emulation or on the system hardware, presents a series of potential
challenges and opportunities. Running the system for the first time, you can profile the
application to identify bottlenecks, or performance issues that offer opportunities to optimize the
design, as discussed in the sections below. Of course, running the application can also reveal
coding errors, or design errors that need to be debugged to get the system running as expected.

This section contains the following chapters:

• Profiling the Application

• Optimizing the Performance

Section IV: Profiling, Optimizing, and Debugging the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 197Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=197

• Debugging Applications and Kernels

Section IV: Profiling, Optimizing, and Debugging the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 198Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=198

Chapter 19

Profiling the Application
The Vitis™ core development kit generates various system and kernel resource performance
reports during compilation. These reports help you establish a baseline of performance on your
application, identify bottlenecks, and help to identify target functions that can be accelerated in
hardware kernels as discussed in Methodology for Architecting a Device Accelerated Application.
The Xilinx Runtime (XRT) also collects profiling data during application execution in both
emulation and system mode configurations. Examples of the reported data includes:

• Host and device timeline events

• OpenCL™ API call sequence

• Kernel execution sequence

• Kernel start and stop signals

• FPGA trace data including AXI transactions

• Power profile information for the accelerator card.

Profiling reports and data can be used to isolate performance bottlenecks in the application,
identify problems in the system, and optimize the design to improve performance. Optimizing an
application requires optimizing both the application host code and any hardware accelerated
kernels. The host code must be optimized to facilitate data transfers and kernel execution, while
the kernel should be optimized for performance and resource usage.

There are four distinct areas to be considered when performing algorithm optimization in Vitis:
System resource usage and performance, kernel optimization, host optimization, and data
transfer optimization. The following Vitis reports and graphical tools support your efforts to
profile and optimize these areas:

• Guidance

• System Estimate Report

• HLS Report

• Profile Summary Report

• Application Timeline

• Waveform View and Live Waveform Viewer

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 199Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=199

Reports are automatically generated after running the active build, either from the command line
as described in Running an Application, or from the Vitis integrated design environment (IDE).
Separate sets of reports are generated for all three build targets and can be found in the
respective report directories. Refer to Directory Structure for more information on locating these
reports.

Reports can be viewed in Vitis analyzer, or in some cases from the Vitis IDE. To access these
reports from Vitis analyzer, refer to Section VI: Using the Vitis Analyzer.

Enabling Profiling in Your Application
To enable profiling, and the capture of trace data during the execution of your application, you
must instrument your application for this task. You must enable additional logic, and consume
additional device resources to track the behavior of the host and kernel execution steps.

TIP: While capturing profile data is a critical part of the profiling and optimization process for building your
accelerated application, it does consume additional resources, and impacts performance. You should be
sure to clean these elements out of your final production build.

The device binary (xclbin) file is configured for capturing profiling data by default. However,
using the --profile_kernel option during the Vitis compiler linking process instruments the
FPGA binary by adding Acceleration Monitors and AXI Performance Monitors to kernels. This
option has three distinct instrumentation options: data, stall, and exec, as described in the
Vitis Compiler Command.

As an example, add --profile_kernel to the v++ linking command line:

v++ -g -l --profile_kernel data:all:all:all ...

TIP: Be sure to also use the v++ -g  option (or --debug) when compiling your kernel code for software
or hardware emulation.

After your application is enabled for profiling during the build process, data gathering must also
be enabled in XRT by editing the xrt.ini file. Refer to xrt.ini File for more information.

The following xrt.ini file will enable maximum information gathering when the application is
run:

[Debug]
profile=true
power_profile=true
timeline_trace=true
data_transfer_trace=coarse
stall_trace=all

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 200Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=200

To enable the profiling of Kernel Internals data, you must also add the debug_mode tag in the
[Emulation] section of the xrt.ini:

[Emulation]
debug_mode=batch

For Live Waveform Viewer, debug_mode is as follows:

[Emulation]
debug_mode=gui

TIP: If Live Waveform Viewer is enabled, the simulation waveform opens during the hardware emulation
run.

If you are collecting a large amount of trace data, you can specify the --trace_memory option
for the Vitis compiler, and add trace_buffer_size keyword in the xrt.ini.

• --trace_memory: indicates what type of memory to use for capturing profile data, as
described in Vitis Compiler General Options.

• trace_buffer_size: Specifies the amount of memory to use for capturing the profile data.

Finally, you can enable continuous trace capture to continuously offload device trace data while
the application is running, so in the event of a application or system crash, some trace data is
available to help debug the application. To enable, add the continuous_trace keyword in the
xrt.ini file.

Baselining Functionalities and Performance
Methodology for Accelerating Applications with the Vitis Software Platform provides an
overview of designing an application beginning with profiling the application to identify functions
to accelerate, leading into recommended ways of developing C/C++ accelerators. As discussed in
the this guide, it is very important to understand the architecture and performance of your
application before you start any optimization effort. This is achieved by establishing a baseline
for the application in terms of functions and performance.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 201Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=201

Figure 37: Baselining Functions and Performance Flow

Run application on processor

Profile application to identify
bottlenecks and select functions to be

accelerated.

Convert host code to use OpenCL APIs
Convert target functions to CL or C/C++

kernels

Run Software Emulation Verify Function
Correctness

Run Hardware Emulation

Analyze Kernel Compilation Reports,
Profile Summary, Timeline Trace, Device

HW Transactions

Build and Run application on FPGA
acceleration card

Analyze Profile Summary
Analyze Timeline Trace

Function/Performance baselined

X22238-082719

Identify Bottlenecks

The first step is to identify the bottlenecks of the your application running on your target
platform. The most effective way is to run the application with profiling tools, like valgrind,
callgrind, and GNU gprof. The profiling data generated by these tools show the call graph
with the number of calls to all functions and their execution time.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 202Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=202

Run Software and Hardware Emulation

Run software and hardware emulation on the accelerated application as described in Running an
Application, to verify functional correctness, and to generate profiling data on the host code and
the kernels. Use Vitis analyzer to review the kernel compilation reports, profile summary, timeline
trace, and device hardware transactions to understand the baseline performance estimate for
timing interval, latency, and resource utilization, such as DSP and block RAM.

Build and Run the Application

The last step in baselining is building and running the application on an FPGA acceleration card,
like one of the Alveo™ Data Center accelerator cards. Analyze the reports from the system
compilation, and the profiling data from application execution to see the actual performance and
resource utilization on hardware.

TIP: Save all the reports during the baseline process, so that you can refer back to them and compare
results during optimization.

Guidance
The Vitis core development kit has a comprehensive design guidance tool that provides
immediate, actionable guidance to the software developer for issues detected in their designs.
These issues might be related to the source code, or due to missed tool optimizations. Also, the
rules are generic rules based on an extensive set of reference designs. Therefore, these rules
might not be applicable for your specific design. It is up to you to understand the specific
guidance rules and take appropriate action based on your specific algorithm and requirements.

Guidance is generated from the Vitis HLS, Vitis profiler, and Vivado Design Suite when invoked
by the v++ compiler. The generated design guidance can have several severity levels; warning
messages, informational messages and design rule checks are provided during software
emulation, hardware emulation, and system builds. The profile design guidance helps you
interpret the profiling results which allows you to focus on improving performance.

Guidance includes message text for reported violations, a brief suggested resolution, and a
detailed resolution provided as a web link. You can determine your next course of action based
on the suggested resolution. This helps improves productivity by quickly highlighting issues and
directing you to additional information in using the Vitis technology.

Design guidance is automatically generated after building or running an application from the
command line or Vitis IDE.

You can open the Guidance report as discussed in Section VI: Using the Vitis Analyzer. To access
the Guidance report, open the Compile Summary, the Link Summary, or the Run Summary, and
open the Guidance report.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 203Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=203

• Kernel Guidance is generated by the Vitis HLS tool after kernel is built using v++ compile
command. This can be viewed in the Vitis analyzer by opening the Compile Summary report.
Kernel guidance as well as Compile Summary files are generated for each kernel compiled.
Kernel guidance includes recommendations on using Dataflow; and possible reasons why the
expected throughout could not be achieved.

• System Guidance is generated after kernel is built using the v++ link command. This can be
viewed in the Vitis analyzer by opening the Link Summary report. System guidance includes all
Kernel Guidance checks, and provides comprehensive review before running your application.

• Run Guidance is generated when your generated .xclbin is run, and is a feature of the XRT.
This can be viewed by opening the Run Summary in the Vitis analyzer. Run Guidance includes
checks like if Kernel Stall is above 50%, recommendations if PLRAM can be used instead of
DDR, etc.

With the Guidance report open, the Guidance view displays the messages along with resolution
columns. The resolutions also have extended weblink help available.

The following image shows an example of the Guidance report displayed in the Vitis analyzer. For
example, clicking a link in the Name column opens a description of the rule check. Links in the
Details column can open source code, select a design object such as a kernel, or navigate to
another report.

Figure 38: Design Guidance Example

There is one HTML guidance report for each run of the v++ command, including compile and
link. The report files are located in the --report_dir under the specific output name. For
example:

• v++_compile_<output>_guidance.html for v++ compilation

• v++_link_<output>_guidance.html for v++ linking

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 204Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=204

You can click the web link in the Resolution column to get additional details about the resolution.
The Guidance Messaging web page lists all of the current messages for your review.

Figure 39: Guidance Messaging Web Page

Kernel and Compute Unit objects, as well as profile reported data values, can also be cross-
probed to other views like the System Diagram or Profile Report. Refer to Working with Reports
for more information.

Opening the Guidance Report
When kernels are compiled and when the FPGA binary is linked, guidance reports are generated
automatically by the v++ command. You can view these reports in the Vitis analyzer by opening
the <output_filename>.compile_summary or the
<output_filename>.link_summary for the application project. The <output_filename>
is the output of the v++ command.

As an example, launch the Vitis analyzer and open the report using this command:

vitis_analyzer <output_filename>.link_summary

When the Vitis analyzer opens, it displays the link summary report, as well as the compile
summary, and a collection of reports generated during the compile and link processes. Both the
compile and link steps generate Guidance reports to view by clicking the Build heading on the
left-hand side. Refer to Section VI: Using the Vitis Analyzer for more information.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 205Send Feedback

https://www.xilinx.com/html_docs/xilinx2020_1/vitis-guidance/index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=205

Interpreting Guidance Data
The Guidance view places each entry in a separate row. Each row might contain the name of the
guidance rule, threshold value, actual value, and a brief but specific description of the rule. The
last field provides a link to reference material intended to assist in understanding and resolving
any of the rule violations.

In the GUI Guidance view, guidance rules are grouped by categories and unique IDs in the Name
column and annotated with symbols representing the severity. These are listed individually in the
HTML report. In addition, as the HTML report does not show tooltips, a full Name column is
included in the HTML report as well.

The following list describes all fields and their purpose as included in the HTML guidance reports.

• Id: Each guidance rule is assigned a unique ID. Use this id to uniquely identify a specific
message from the guidance report.

• Name: The Name column displays a mnemonic name uniquely identifying the guidance rule.
These names are designed to assist in memorizing specific guidance rules in the view.

• Severity: The Severity column allows the easy identification of the importance of a guidance
rule.

• Full Name: The Full Name provides a less cryptic name compared to the mnemonic name in
the Name column.

• Categories: Most messages are grouped within different categories. This allows the GUI to
display groups of messages within logical categories under common tree nodes in the
Guidance view.

• Threshold: The Threshold column displays an expected threshold value, which determines
whether or not a rule is met. The threshold values are determined from many applications that
follow good design and coding practices.

• Actual: The Actual column displays the values actually encountered on the specific design.
This value is compared against the expected value to see if the rule is met.

• Details: The Details column provides a brief message describing the specifics of the current
rule.

• Resolution: The Resolution column provides a pointer to common ways the model source
code or tool transformations can be modified to meet the current rule. Clicking the link brings
up a popup window or the documentation with tips and code snippets that you can apply to
the specific issue.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=206

System Estimate Report
The process step with the longest execution time includes building the hardware system and the
FPGA binary to run on Xilinx devices. Build time is also affected by the target device and the
number of compute units instantiated onto the FPGA fabric. Therefore, it is useful to estimate
the performance of an application without needing to build it for the system hardware.

The System Estimate report provides estimates of FPGA resource usage and the estimated
frequency at which the hardware accelerated kernels can operate. The report is automatically
generated for hardware emulation and system hardware builds. The report contains high-level
details of the user kernels, including resource usage and estimated frequency. This report can be
used to guide design optimization.

You can also force the generation of the System Estimate report with the following option:

v++ .. --report_level estimate

An example report is shown in the figure:

Figure 40: System Estimate

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 207Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=207

Opening the System Estimate Report
The System Estimate report can be opened in the Vitis analyzer tool, intended for viewing
reports from the Vitis compiler when the application is built, and the XRT library when the
application is run. You can launch the Vitis analyzer and open the report using the following
command:

vitis_analyzer <output_filename>.link_summary

The <output_filename> is the output of the v++ command. This opens the Link Summary for
the application project in the Vitis analyzer tool. Then, select the System Estimate report. Refer
to Section VI: Using the Vitis Analyzer for more information.

TIP: Because the System Estimate report is a text file, you can also view it in a text editor or target
platform.

Interpreting the System Estimate Report
The System Estimate report generated by the v++ command provides information on every
binary container in the application, as well as every compute unit in the design. The report is
structured as follows:

• Target device information

• Summary of every kernel in the application

• Detailed information on every binary container in the solution

The following example report file represents the information generated for the estimate report:

--

Design Name: mmult.hw_emu.xilinx_u200_xdma_201830_2
Target Device: xilinx:u200:xdma:201830.2
Target Clock: 300.000000MHz
Total number of kernels: 1
--

Kernel Summary
Kernel Name Type Target OpenCL
Library Compute Units
----------- ---- ------------------
-------------------------------------- -------------
mmult c fpga0:OCL_REGION_0
mmult.hw_emu.xilinx_u200_xdma_201830_2 1

--

OpenCL Binary: mmult.hw_emu.xilinx_u200_xdma_201830_2
Kernels mapped to: clc_region

Timing Information (MHz)

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 208Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=208

Compute Unit Kernel Name Module Name Target Frequency Estimated
Frequency
------------ ----------- ----------- ----------------

mmult_1 mmult mmult 300.300293 411.015198

Latency Information (clock cycles)
Compute Unit Kernel Name Module Name Start Interval Best Case Avg
Case Worst Case
------------ ----------- ----------- -------------- ---------
-------- ----------
mmult_1 mmult mmult 826 ~ 829 825
827 828

Area Information
Compute Unit Kernel Name Module Name FF LUT DSP BRAM URAM
------------ ----------- ----------- ----- ----- ---- ---- ----
mmult_1 mmult mmult 81378 35257 1036 2 0
--

Design and Target Device Summary

All design estimate reports begin with an application summary and information about the target
device. The device information is provided in the following section of the report:

--

Design Name: mmult.hw_emu.xilinx_u200_xdma_201830_2
Target Device: xilinx:u200:xdma:201830.2
Target Clock: 300.000000MHz
Total number of kernels: 1
--

For the design summary, the information provided includes the following:

• Target Device: Name of the Xilinx device on the target platform that runs the FPGA binary
built by the Vitis compiler.

• Target Clock: Specifies the target operating frequency for the compute units (CUs) mapped to
the FPGA fabric.

Kernel Summary

This section lists all of the kernels defined for the application project. The following example
shows the kernel summary:

Kernel Summary
Kernel Name Type Target OpenCL
Library Compute Units
----------- ---- ------------------
-------------------------------------- -------------
mmult c fpga0:OCL_REGION_0
mmult.hw_emu.xilinx_u200_xdma_201830_2 1

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 209Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=209

In addition to the kernel name, the summary also provides the execution target and type of the
input source. Because there is a difference in compilation and optimization methodology for
OpenCL™, C, and C/C++ source files, the type of kernel source file is specified.

The Kernel Summary section is the last summary information in the report. From here, detailed
information on each compute unit binary container is presented.

Timing Information

For each binary container, the detail section begins with the execution target of all compute units
(CUs). It also provides timing information for every CU. As a general rule, if the estimated
frequency for the FPGA binary is higher than the target frequency, the CU will be able to run in
the device. If the estimated frequency is below the target frequency, the kernel code for the CU
needs to be further optimized to run correctly on the FPGA fabric. This information is shown in
the following example:

OpenCL Binary: mmult.hw_emu.xilinx_u200_xdma_201830_2
Kernels mapped to: clc_region

Timing Information (MHz)
Compute Unit Kernel Name Module Name Target Frequency Estimated
Frequency
------------ ----------- ----------- ----------------

mmult_1 mmult mmult 300.300293 411.015198

It is important to understand the difference between the target and estimated frequencies. CUs
are not placed in isolation into the FPGA fabric. CUs are placed as part of a valid FPGA design
that can include other components defined by the device developer to support a class of
applications.

Because the CU custom logic is generated one kernel at a time, an estimated frequency that is
higher than the target frequency indicates that the CU can run at the higher estimated
frequency. Therefore, CU should meet timing at the target frequency during implementation of
the FPGA binary.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 210Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=210

Latency Information

The latency information presents the execution profile of each CU in the binary container. When
analyzing this data, it is important to recognize that all values are measured from the CU
boundary through the custom logic. In-system latencies associated with data transfers to global
memory are not reported as part of these values. Also, the latency numbers reported are only for
CUs targeted at the FPGA fabric. The following is an example of the latency report:

Latency Information (clock cycles)
Compute Unit Kernel Name Module Name Start Interval Best Case Avg
Case Worst Case
------------ ----------- ----------- -------------- ---------
-------- ----------
mmult_1 mmult mmult 826 ~ 829 825
827 828

The latency report is divided into the following fields:

• Start interval

• Best case latency

• Average case latency

• Worst case latency

The start interval defines the amount of time that has to pass between invocations of a CU for a
given kernel.

The best, average, and worst case latency numbers refer to how much time it takes the CU to
generate the results of one ND Range data tile for the kernel. For cases where the kernel does
not have data dependent computation loops, the latency values will be the same. Data
dependent execution of loops introduces data specific latency variation that is captured by the
latency report.

The interval or latency numbers will be reported as "undef" for kernels with one or more
conditions listed below:

• OpenCL kernels that do not have explicit reqd_work_group_size(x,y,z)

• Kernels that have loops with variable bounds

Note: The latency information reflects estimates based on the analysis of the loop transformations and
exploited parallelism of the model. These advanced transformations such as pipelining and data flow can
heavily change the actual throughput numbers. Therefore, latency can only be used as relative guides
between different runs.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 211Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=211

Area Information

Although the FPGA can be thought of as a blank computational canvas, there are a limited
number of fundamental building blocks available in each FPGA. These fundamental blocks (FF,
LUT, DSP, block RAM) are used by the Vitis compiler to generate the custom logic for each CU in
the design. The quantity of fundamental resources needed to implement the custom logic for a
single CU determines how many CUs can be simultaneously loaded into the FPGA fabric. The
following example shows the area information reported for a single CU:

Area Information
Compute Unit Kernel Name Module Name FF LUT DSP BRAM URAM
------------ ----------- ----------- ----- ----- ---- ---- ----
mmult_1 mmult mmult 81378 35257 1036 2 0
--

HLS Report
The HLS report provides details about the high-level synthesis (HLS) process of a user kernel and
is generated in hardware emulation and system builds. This process translates the C/C++ and
OpenCL kernel into the hardware description language used for implementing the kernel logic on
the FPGA. The report provides estimated FPGA resource usage, operating frequency, latency,
and interface signals of the custom-generated hardware logic. These details provide many
insights to guide kernel optimization.

When running from the command line, this report can be found in the following directory:

_x/<kernel_name>.<target>.<platform>/<kernel_name>/<kernel_name>/
solution/syn/report

The HLS report can be opened from the Vitis analyzer by opening the Compile Summary, or the
Link Summary as described in Section VI: Using the Vitis Analyzer. An example of the HLS report
is shown.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 212Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=212

Figure 41: HLS Report

Generating and Opening the HLS Report
IMPORTANT! You must specify the --save-temps  option during the build process to preserve the
intermediate files produced by Vitis HLS, including the reports. The HLS report and HLS guidance are only
generated for hardware emulation and system builds for C and OpenCL kernels. They are not generated for
software emulation or RTL kernels.

The HLS report can be viewed through the Vitis analyzer by opening the
<output_filename>.compile_summary or the <output_filename>.link_summary
for the application project. The <output_filename> is the output of the v++ command.

You can launch the Vitis analyzer and open the report using the following command:

vitis_analyzer <output_filename>.compile_summary

When the Vitis analyzer opens, it displays the Compile Summary and a collection of reports
generated during the compile process. Refer to Section VI: Using the Vitis Analyzer for more
information.

Interpreting the HLS Report
The HLS Synthesis report is a spreadsheet listing the module hierarchy in the left column. Each
module and loop generated by the HLS run is represented in this hierarchy. The HLS Synthesis
report contains the following columns:

• Violation Type

• Latency in clock cycles

• Latency in absolute time (µs)

• Iteration latency

• Iteration Interval

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 213Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=213

• Loop Tripcount

• Pipelined

• Utilization Estimates of BRAM, DSP, FF, and LUT

• Negative Slack

If this information is part of a hierarchical block, it will sum up the information of the blocks
contained in the hierarchy. Therefore, the hierarchy can also be navigated from within the report
when it is clear which instance contributes to the overall design.

CAUTION! Regarding the absolute counts of cycles and latency, these numbers are based on estimates
identified during HLS synthesis, especially with advanced transformations, such as pipelining and dataflow.
These numbers might not accurately reflect the final results. If you encounter question marks in the report,
this might be due to variable bound loops, and you are encouraged to set trip counts for such loops to have
some relative estimates presented in this report.

Profile Summary Report
When properly configured, the Xilinx Runtime (XRT) collects profiling data on host applications
and kernels. After the application finishes execution, the Profile Summary report is saved as
a .csv file in the directory where the compiled host code is executed.

The Profile Summary provides annotated details regarding the overall application performance.
All data generated during the execution of the application is grouped into categories. The Profile
Summary lets you examine kernel execution and data transfer statistics.

TIP: The Profile Summary report can be generated for all build configurations. However, with the software
emulation build, the report will not include any data transfer details under kernel execution efficiency and
data transfer efficiency. This information is only generated in hardware emulation or system builds.

An example of the Profile Summary report is shown below.

Figure 42: Profile Summary

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 214Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=214

The Profile Summary report displays a navigation index based on available sections. The report
graphs statistics presenting them as bar graphs, refer to Interpreting the Profile Summary.

Generating and Opening the Profile Summary Report
Capturing the data required for the Profile Summary requires a few steps prior to actually
running the application.

1. The FPGA binary (xclbin) file is configured for capturing profiling data by default. However,
using the v++ --profile_kernel option during the linking process enables a greater
level of detail in the profiling data captured. For more information on the --
profile_kernel option, see the Vitis Compiler Command.

2. The runtime requires the presence of an xrt.ini file, as described in xrt.ini File, that
includes the keyword for capturing profiling data:

[Debug]
profile = true

3. To enable the profiling of Kernel Internals data, you must also add the debug_mode tag in
the [Emulation] section of the xrt.ini:

[Emulation]
debug_mode = batch

With profiling enabled in the FPGA binary and in the xrt.ini file, the runtime creates the
profile_summary.csv report file when running the application, and also creates the
profile_kernels.csv and timeline_kernels.csv files when Kernel Internals is enabled.

The CSV report can be viewed in a spreadsheet tool or utility, or can be opened in the Vitis
analyzer tool, intended for viewing reports from the Vitis compiler when the application is built,
and the XRT library when the application is run. You can launch the Vitis analyzer and access the
Profile Summary report through the Run Summary using the following command:

vitis_analyzer project1.run_summary

Related Information

Running an Application
Section VI: Using the Vitis Analyzer

Interpreting the Profile Summary
The profile summary includes a number of useful statistics for your host application and kernels.
The report provides a general idea of the functional bottlenecks in your application. The
following tables show the profile summary descriptions.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 215Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=215

Settings

This displays the report and XRT configuration settings.

Summary

This displays summary statistics including device execution time and device power.

Kernels & Compute Units

The following table displays the profile summary data for all kernel functions scheduled and
executed.

Table 15: Kernel Execution

Name Description
Kernel Name of kernel

Enqueues Number of times kernel is enqueued. When the kernel is enqueued only once, the following
stats will all be the same.

Total Time Sum of runtimes of all enqueues (measured from START to END in OpenCL execution
model) (in ms)

Minimum Time Minimum runtime of all enqueues

Average Time Average kernel runtime (in ms)
(Total time) / (Number of enqueues)

Maximum Time Maximum runtime of all enqueues (in ms)

The following table displays the profile summary data for top kernel functions.

Table 16: Top Kernel Execution

Name Description
Kernel Name of kernel

Kernel Instance Address Host address of kernel instance (in hex)

Context ID OpenCL Context ID on host

Command Queue ID OpenCL Command queue ID on host

Device Name of OpenCL device where kernel was executed (format: <device>-<ID>)

Start Time Start time of execution (in ms)

Duration Duration of execution (in ms)

This following table displays the profile summary data for all compute units on the device.

Table 17: Compute Unit Utilization

Name Description
Compute Unit Name of compute unit

Kernel Kernel this compute unit is associated with

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 216Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=216

Table 17: Compute Unit Utilization (cont'd)

Name Description
Device Name of the OpenCL device (format: <device>-<ID>)

Calls Number of times the compute unit is called

Dataflow Execution Specifies whether the CU is executed with dataflow

Max Parallel Executions Number of executions in the dataflow region

Dataflow Acceleration Shows the performance improvement due to dataflow execution

Total Time Sum of the runtimes of all calls (in ms)

Minimum Time Minimum runtime of all calls (in ms)

Minimum runtime of all calls (Total time) / (Number of work groups)

Maximum Time Maximum runtime of all calls (in ms)

Clock Frequency Clock frequency used for a given accelerator (in MHz)

CU Utilization (%) Shows the percent of the total kernel runtime that is consumed by the CU

This following table displays the profile summary data for running times and stalls for compute
units on the device.

Table 18: Compute Unit Running Times & Stalls

Name Description
Compute Unit Name of compute unit

Running Time Total time compute unit was running (in µs)

Intra-Kernel Dataflow Stalls (%) Percent time the compute unit was stalling from intra-kernel streams

External Memory Stalls (%) Percent time the compute unit was stalling from external memory accesses

Inter-Kernel Pipe Stalls (%) Percent time the compute unit was stalling from inter-kernel pipe accesses

Kernel Data Transfers

This following table displays the data transfer for kernels to the global memory.

Table 19: Data Transfer

Name Description
Compute Unit Port Name of compute unit/port

Kernel Arguments List of kernel arguments attached to this port

Device Name of device (format: <device>-<ID>)

Memory Resources Memory resource accessed by this port

Transfer Type Type of kernel data transfers

Number of Transfers Number of kernel data transfers (in AXI transactions)

Note: This might contain printf transfers.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 217Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=217

Table 19: Data Transfer (cont'd)

Name Description
Transfer Rate Rate of kernel data transfers (in MB/s):

Transfer Rate = (Total Bytes) / (Total CU Execution Time)
Where total CU execution time is the total time the CU was active

Avg Bandwidth Utilization (%) Average bandwidth of kernel data transfers:
Bandwidth Utilization (%) = (100 * Transfer Rate) / (0.6 * Max. Theoretical Rate)

Avg Size Average size of kernel data transfers (in KB):
Average Size = (Total KB) / (Number of Transfers)

Avg Latency Average latency of kernel data transfers (in ns)

This following table displays the top data transfer for kernels to the global memory.

Table 20: Top Data Transfer

Name Description
Compute Unit Name of compute unit

Device Name of device

Number of Transfers Number of write and read data transfers

Avg Bytes per Transfer Average bytes of kernel data transfers:
Average Bytes = (Total Bytes) / (Number of Transfers)

Transfer Efficiency (%) Efficiency of kernel data transfers:
Efficiency = (Average Bytes) / min((Memory Byte Width * 256), 4096)

Total Data Transfer Total data transferred by kernels (in MB):
Total Data = (Total Write) + (Total Read)

Total Write Total data written by kernels (in MB)

Total Read Total data read by kernels (in MB)

Total Transfer Rate Average total data transfer rate (in MB/s):
Total Transfer Rate = (Total Data Transfer) / (Total CU Execution Time)
Where total CU execution time is the total time the CU was active

This following table displays the data transfer streams.

Note: This table is only shown if there is stream data

Table 21: Data Transfer Streams

Name Description
Master Port Name of master compute unit and port

Master Kernel Arguments List of kernel arguments attached to this port

Slave Port Name of slave compute unit and port

Slave Kernel Arguments List of kernel arguments attached to this port

Device Name of device (format: <device>-<ID>)

Number of Transfers Number of stream data packets

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 218Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=218

Table 21: Data Transfer Streams (cont'd)

Name Description
Transfer Rate Rate of stream data transfers (in MB/s):

Transfer Rate = (Total Bytes) / (Total CU Execution Time)
Where total CU execution time is the total time the CU was active

Avg Size Average size of kernel data transfers (in KB):
Average Size = (Total KB) / (Number of Transfers)

Link Utilization (%) Link utilization (%):
Link Utilization = 100 * (Link Busy Cycles - Link Stall Cycles - Link Starve Cycles) / (Link Busy
Cycles)

Link Starve (%) Link starve (%):
Link Starve = 100 * (Link Starve Cycles) / (Link Busy Cycles)

Link Stall (%) Link stall (%):
Link Stall = 100 * (Link Stall Cycles) / (Link Busy Cycles)

Host Data Transfers

This following table displays profile data for all write transfers between the host and device
memory through PCI Express® link.

Table 22: Top Memory Writes

Name Description
Buffer Address Specifies the address location for the buffer

Context ID OpenCL Context ID on host

Command Queue ID OpenCL Command queue ID on host

Start Time Start time of write operation (in ms)

Duration Duration of write operation (in ms)

Buffer Size Amount of data being transferred (in KB)

Writing Rate Data transfer rate (in MB/s):
(Buffer Size)/(Duration)

This following table displays profile data for all read transfers between the host and device
memory through PCI Express® link.

Table 23: Top Memory Reads

Name Description
Buffer Address Specifies the address location for the buffer

Context ID OpenCL Context ID on host

Command Queue ID OpenCL Command queue ID on host

Start Time Start time of read operation (in ms)

Duration Duration of read operation (in ms)

Buffer Size Amount of data being transferred (in KB)

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 219Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=219

Table 23: Top Memory Reads (cont'd)

Name Description
Reading Rate Data transfer rate (in MB/s):

(Buffer Size)/(Duration)

This following table displays the data transfer for host to the global memory.

Table 24: Data Transfer

Name Description
Context:Number of Devices Context ID and number of devices in context

Transfer Type Type of kernel host transfers

Number of Buffer Transfers Number of host buffer transfers

Note: This might contain printf transfers.

Transfer Rate Rate of host buffer transfers (in MB/s):
Transfer Rate = (Total Bytes) / (Total Time in µs)

Avg Bandwidth Utilization (%) Average bandwidth of host buffer transfers:
Bandwidth Utilization (%) = (100 * Transfer Rate) / (Max. Theoretical Rate)

Avg Size Average size of host buffer transfers (in KB):
Average Size = (Total KB) / (Number of Transfers)

Total Time Sum of host buffer transfer durations (in ms)

Avg Time Average of host buffer transfer durations (in ms)

API Calls

This following table displays the profile data for all OpenCL host API function calls executed in
the host application. The top displays a bar graph of the API call time as a percent of total time.

Table 25: API Calls

Name Description
API Name Name of the API function (for example, clCreateProgramWithBinary,

clEnqueueNDRangeKernel)

Calls Number of calls to this API made by the host application

Total Time Sum of runtimes of all calls (in ms)

Minimum Time Minimum runtime of all calls (in ms)

Average Time Average Time (in ms)
(Total time) / (Number of calls)

Maximum Time Maximum runtime of all calls (in ms)

Device Power

This following table displays the profile data for device power.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 220Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=220

Table 26: Device Power

Name Description
Power Used By Platform Shows a line graph of the three power rails on a Data Center acceleration card:

• 12V Auxiliary
• 12V PCIe
• Internal power
These show the power (W) usage of the card over time.

Kernel Internals

This following table displays the running time for compute units in microseconds (µs) and reports
stall time as a percent of the running time.

TIP: The Kernel Internals tab reports time in µs, while the rest of the Profile Summary reports time in
milliseconds (ms).

Table 27: CU Runtime and Stalls

Name Description
Compute Unit Indicates the compute unit instance name

Running Time Reports the total running time for the CU (in µs)

Intra-Kernel Dataflow Stalls (%) Reports the percentage of running time consumed in stalls when streaming data
between kernels

External Memory Stalls (%) Reports the percentage of running time consumed in stalls for memory transfers
outside the CU

Inter-Kernel Pipe Stalls (%) Reports the percentage of running time consumed in stalls when streaming data to
or from outside the CU

This following table displays the data transfer for specific ports on the compute unit.

Table 28: CU Port Data Transfers

Name Description
Port Indicates the port name on the compute unit

Compute Unit Indicates the compute unit instance name

Write Time Specifies the total data write time on the port (in µs)

Outstanding Write (%) Specifies the percentage of the runtime consumed in the write process

Read Time Specifies the total data read time on the port (in µs)

Outstanding Read (%) Specifies the percentage of the runtime consumed in the read process

This following table displays the functional port data transfers on the compute unit.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 221Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=221

Table 29: Functional Port Data Transfers

Name Description
Port Name of port

Function Name of function

Compute Unit Name of compute unit

Write Time Total time the port had an outstanding write (in µs)

Outstanding Write (%) Percent time the port had an outstanding write

Read Time Total time the port had an outstanding read (in µs)

Outstanding Read (%) Percent time the port had an outstanding read

This following table displays the running time and stalls on the compute unit.

Table 30: Functions

Name Description
Compute Unit Name of compute unit

Function Name of function

Running Time Total time function was running (in ms)

Intra-Kernel Dataflow Stalls Percent time the function was stalling from intra-kernel streams (in ms)

External Memory Stalls Percent time the function was stalling from external memory accesses (in ms)

Inter-Kernel Pipe Stalls Percent time the function was stalling from inter-kernel pipe accesses (in ms)

Shell Data Transfers

This following table displays the DMA data transfers.

Table 31: DMA Data Transfer

Name Description
Device Name of device (format: <device>-<ID>)

Transfer Type Type of data transfers

Number of Transfers Number of data transfers (in AXI transactions)

Transfer Rate Rate of data transfers (in MB/s):
Transfer Rate = (Total Bytes) / (Total Time in µs)

Total Data Transfer Total amount of data transferred (in MB)

Total Time Total duration of data transfers (in ms)

Avg Size Average size of data transfers (in KB):
Average Size = (Total KB) / (Number of Transfers)

Avg Latency Average latency of data transfers (in ns)

For DMA bypass and Global Memory to Global Memory data transfers, see the DMA Data
Transfer table above.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 222Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=222

Application Timeline
The Application Timeline collects and displays host and kernel events on a common timeline to
help you understand and visualize the overall health and performance of your systems. The
graphical representation lets you see issues regarding kernel synchronization and efficient
concurrent execution. The displayed events include:

• OpenCL API calls from the host code.

• Device trace data including compute units, AXI transaction start/stop.

• Host events and kernel start/stops.

While this is useful for debugging and profiling the application, the timeline and device trace data
are not collected by default, which can affect performance by adding time to the application
execution. However, the trace data is collected with dedicated resources in the kernel, and does
not affect kernel functionality. The data is offloaded only at the end of the run (v++ --
trace_memory option).

The following is a snapshot of the Application Timeline window which displays host and device
events on a common timeline. Host activity is displayed at the top of the image and kernel
activity is shown on the bottom of the image. Host activities include creating the program,
running the kernel and data transfers between global memory and the host. The kernel activities
include read/write accesses and transfers between global memory and the kernel(s). This
information helps you understand details of application execution and identify potential areas for
improvements.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 223Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=223

Figure 43: Application Timeline

Timeline data can be enabled and collected through the command line flow. However, viewing
must be done in the Vitis analyzer as described in Section VI: Using the Vitis Analyzer.

Generating and Opening the Application Timeline
To generate the Application Timeline report, you must complete the following steps to enable
timeline and device trace data collection in the command line flow:

1. Instrument the FPGA binary during linking, by adding Acceleration Monitors and AXI
Performance Monitors to kernels using the v++ --profile_kernel option. This option
has three distinct instrumentation options (data, stall, and exec), as described in the Vitis
Compiler Command. As an example, add --profile_kernel to the v++ linking command
line:

v++ -g -l --profile_kernel data:all:all:all ...

2. After the kernels are instrumented during the build process, data gathering must also be
enabled during the application runtime execution by editing the xrt.ini file. Refer to xrt.ini
File for more information.

The following xrt.ini file will enable maximum information gathering when the application
is run:

[Debug]
profile=true
timeline_trace=true
data_transfer_trace=coarse
stall_trace=all

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 224Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=224

TIP: If you are collecting a large amount of trace data, you might need to use the --trace_memory 
with the v++  command, and the trace_buffer_size  keyword in the xrt.ini.

After running the application, the Application Timeline data is captured in a CSV file called
timeline_trace.csv.

3. The CSV report can be viewed in a spreadsheet tool or utility, or can be opened in the Vitis
analyzer tool, intended for viewing reports from the Vitis compiler when the application is
built, and the XRT library when the application is run. You can launch the Vitis analyzer and
open the report using the following command:

vitis_analyzer timeline_trace.csv

Interpreting the Appication Timeline
The Application Timeline window displays host and device events on a common timeline. This
information helps you understand details of application execution and identify potential areas for
improvements. The Application Timeline report has two main sections: Host and Device. The
Host section shows the trace of all the activity originating from the host side. The Device section
shows the activity of the CUs on the FPGA.

The report has the following structure:

• Host

• OpenCL API Calls: All OpenCL API calls are traced here. The activity time is measured from
the host perspective.

• General: All general OpenCL API calls such as clCreateProgramWithBinary,
clCreateContext, and clCreateCommandQueue, are traced here.

• Queue: OpenCL API calls that are associated with a specific command queue are traced
here. This includes commands such as clEnqueueMigrateMemObjects, and
clEnqueueNDRangeKernel. If the user application creates multiple command
queues, then this section shows all the queues and activities.

• Data Transfer: In this section the DMA transfers from the host to the device memory
are traced. There are multiple DMA threads implemented in the OpenCL runtime and
there is typically an equal number of DMA channels. The DMA transfer is initiated by
the user application by calling OpenCL APIs such as
clEnqueueMigrateMemObjects. These DMA requests are forwarded to the runtime
which delegates to one of the threads. The data transfer from the host to the device
appear under Write as they are written by the host, and the transfers from device to
host appear under Read.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 225Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=225

• Kernel Enqueues: The kernels enqueued by the host program are shown here. The
kernels here should not be confused with the kernels/CUs on the device. Here kernel
refers to the NDRangeKernels and tasks created by the OpenCL commands
clEnqueueNDRangeKernels and clEnqueueTask. These are plotted against the
time measured from the host’s perspective. Multiple kernels can be scheduled to be
executed at the same time, and they are traced from the point they are scheduled to run
until the end of the kernel execution. This is the reason for multiple entries. The number
of rows depend on the number of overlapping kernel executions.

Note: Overlapping of the kernels should not be mistaken for actual parallel execution on the
device as the process might not be ready to execute right away.

• Device "name"

• Binary Container "name": Binary container name.

• Accelerator "name": Name of the compute unit (a.k.a., Accelerator) on the FPGA.

• User Functions: In the case of the Vitis HLS tool kernels, functions that are
implemented as data flow processes are traced here. The trace for these functions
show the number of active instances of these functions that are currently executing
in parallel. These names are generated in hardware emulation when waveform is
enabled.

Note: Function level activity is only possible in hardware emulation.

• Function: "name a"

• Function: "name b"

• Read: A CU reads from the DDR over AXI-MM ports. The trace of a data read by a
CU is shown here. The activity is shown as transaction and the tool-tip for each
transaction shows more details of the AXI transaction. These names are generated
when --profile_kernel data is used where the format name is m_axi_<bundle
name>(port).

• Write: A CU writes to the DDR over AXI-MM ports. The trace of data written by a
CU is shown here. The activity is shown as transactions and the tool-tip for each
transaction shows more details of the AXI transaction. This is generated when --
profile_kernel data is used where the format name is m_axi_<bundle
name>(port).

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 226Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=226

Low Overhead Profiling
The Vitis software platform supports a new option for low overhead profiling that provides
minimal information with little effect on execution time. Using this option during runtime, the
timeline trace is still available with a limited amount of information available. The low overhead
profiling plug-in captures minimal information on OpenCL events and dumps a CSV file called
lop_trace.csv at the end of execution. Low overhead can be run in all three flows (hardware,
hardware emulation, and software emulation).

Adding --profile during compile time is not required as there is no profile information
collected. Additionally, there is no guidance summary generated as well.

How to Enable Low Overhead Profiling
To enable the low overhead plug-in, there is a new flag in the "Debug" section of the xrt.ini File
called lop_trace. By default, lop_trace is FALSE and must be enabled by setting the ini
parameter to TRUE.

xrt.ini file
[Debug]
lop_trace=true

While the lop_trace parameter can be mixed with other profiling parameters, doing so
removes any benefit of low overhead by including all the portions of profiling that are causing the
high overhead.

Visualization Runtime when enabled with lop_trace=true option will generate
lop_trace.csv. Use the vp_analyze command to generate the wdb/wcfg files so that
these can be visualized within the Vitis analyzer.

vp_analyze lop_trace.csv

To obtain the lowest possible overhead, information collected in normal OpenCL profiling is
omitted. Specifically, the following information is expected to not be available in the low
overhead profiling trace:

• Device events, such as compute unit executions or kernel memory transfers

• Information about memory reads or writes, such as destination address or size

• Information about kernel enqueues, such as kernel name or NDRange sizes

• Dependencies between buffer transfers and kernel enqueue

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 227Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=227

While the lop_trace parameter can be mixed with other profiling parameters, doing so
removes any benefit of low overhead by including all the portions of the profiling that are causing
the high overhead. If profiling and lop_trace options are mixed, a message at the standard
output is displayed.

Waveform View and Live Waveform Viewer
The Vitis core development kit can generate a Waveform view when running hardware
emulation. It displays in-depth details at the system-level, CU level, and at the function level. The
details include data transfers between the kernel and global memory and data flow through inter-
kernel pipes. These details provide many insights into performance bottlenecks from the system-
level down to individual function calls to help optimize your application.

The Live Waveform Viewer is similar to the Waveform view, however, it provides even lower-
level details with some degree of interactivity. The Live Waveform Viewer can also be opened
using the Vivado logic simulator, xsim.

Note: The Waveform view allows you to examine the device transactions from within the Vitis analyzer, as
described in Section VI: Using the Vitis Analyzer. In contrast, the Live Waveform Viewer generates the
Vivado simulation waveform viewer to examine the hardware transactions in addition to user selected
signals.

Waveform View and Live Waveform Viewer data are not collected by default because it requires
the runtime to generate simulation waveforms during hardware emulation, which consumes
more time and disk space. Refer to Generating and Opening the Waveform Reports for
instructions on enabling these features.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 228Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=228

Figure 44: Waveform View

You can also open the waveform database (.wdb) file with the Vivado logic simulator through the
Linux command line:

xsim -gui <filename.wdb> &

TIP: The .wdb  file is located in the directory where the compiled host code is executed.

Generating and Opening the Waveform Reports
Follow these instructions to enable waveform data collection from the command line during
hardware emulation and open the viewer:

1. Enable debug code generation during compilation and linking using the -g option.

v++ -c -g -t hw_emu ...

2. Create an xrt.ini file in the same directory as the host executable with the following
contents (see xrt.ini File for more information):

[Debug]
profile=true
timeline_trace=true

[Emulation]
debug_mode=batch

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 229Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=229

For Live Waveform Viewer, debug_mode is as follows:

[Emulation]
debug_mode=gui

TIP: If Live Waveform Viewer is enabled, the simulation waveform opens during the hardware
emulation run.

3. Run the hardware emulation build of the application as described in Running an Application.
The hardware transaction data is collected in the waveform database file,
<hardware_platform>-<device_id>-<xclbin_name>.wdb. Refer to Directory
Structure for the location of this file.

4. Open the Waveform view in the Vitis analyzer as described in Waveform View and Live
Waveform Viewer.

Interpreting Data in the Waveform Views
The following image shows the Waveform view:

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 230Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=230

Figure 45: Waveform View

The Waveform and Live Waveform views are organized hierarchically for easy navigation.

• The Waveform view is based on the actual waveforms generated during hardware emulation
(Kernel Trace). This allows the viewer to descend all the way down to the individual signals
responsible for the abstracted data. However, because the Waveform view is generated from
the post-processed data, no additional signals can be added to the report, and some of the
runtime analysis cannot be visualized, such as DATAFLOW transactions.

• The Live Waveform viewer is displaying the Vivado logic simulator (xsim) run, so you can add
extra signals and internals of the register transfer (RTL) design to the live view. Refer to the
Vivado Design Suite User Guide: Logic Simulation (UG900) for information on working with the
Waveform viewer.

The hierarchy of the Waveform and Live Waveform views include the following:

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 231Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=231

• Device "name": Target device name.

• Binary Container "name": Binary container name.

• Memory Data Transfers: For each DDR Bank, this shows the trace of all the read and
write request transactions arriving at the bank from the host.

• Kernel "name" 1:1:1: For each kernel and for each compute unit of that kernel, this
section breaks down the activities originating from the compute unit.

• Compute Unit: "name": Compute unit name.

• CU Stalls (%): Stall signals are provided by the Vitis HLS tool to inform you when a
portion of the circuit is stalling because of external memory accesses, internal
streams (that is, dataflow), or external streams (that is, OpenCL pipes). The stall bus
shown in detailed kernel trace compiles all of the lowest level stall signals and reports
the percentage that are stalling at any point in time. This provides a factor of how
much of the kernel is stalling at any point in the simulation.

For example, if there are 100 lowest level stall signals and 10 are active on a given
clock cycle, then the CU Stall percentage is 10%. If one goes inactive, then it is 9%.

• Data Transfers: This shows the read/write data transfer accesses originating from
each Master AXI port of the compute unit to the DDR.

• User Functions: This information is available for the HLS kernels and shows the user
functions.

• Function: "name": Function name.

• Dataflow/Pipeline Activity: This shows the number of parallel executions of
the function if the function is implemented as a dataflow process.

• Active Iterations: This shows the currently active iterations of the dataflow.
The number of rows is dynamically incremented to accommodate the
visualization of any concurrent execution.

• StallNoContinue: This is a stall signal that tells if there were any output stalls
experienced by the dataflow processes (function is done, but it has not
received a continue from the adjacent dataflow process).

• RTL Signals: These are the underlying RTL control signals that were used to
interpret the above transaction view of the dataflow process.

• Function Stalls: Shows the different types of stalls experienced by the process.

• External Memory: Stalls experienced while accessing the DDR memory.

• Internal-Kernel Pipe: If the compute units communicated between each
other through pipes, then this will show the related stalls.

• Intra-Kernel Dataflow: FIFO activity internal to the kernel.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 232Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=232

• Function I/O: Actual interface signals.

• Function: "name": Function name.

• Function: "name": Function name.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 19: Profiling the Application

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 233Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=233

Chapter 20

Optimizing the Performance

Host Optimization
This section focuses on optimization of the host program, which uses the OpenCL™ API to
schedule the individual compute unit executions, and data transfers to and from the FPGA board.
As a result, you need to think about concurrent execution of tasks through the OpenCL
command queue(s). This section discusses common pitfalls, and how to recognize and address
them.

Reducing Overhead of Kernel Enqueing
The OpenCL API execution model supports data parallel and task parallel programming models.
Kernels are usually enqueued by the OpenCL runtime multiple times and then scheduled to be
executed on the device. You must send the command to start the kernel in one of two ways:

• Using clEnqueueNDRange API for the data parallel case

• Using clEnqueueTask for the task parallel case

The dispatching process is executed on the host processor, and the kernel commands and
arguments need to be sent to the accelerator, over the PCIe® bus in the case of the Alveo card
for instance. In the Xilinx Runtime (XRT) library, the overhead of dispatching the command and
arguments to the accelerator can be between 30 µs and 60 µs, depending the number of
arguments on the kernel. You can reduce the impact of this overhead by minimizing the number
of times the kernel needs to be executed.

For the data parallel case, Xilinx recommends that you carefully choose the global and local work
sizes for your host code and kernel so that the global work size is a small multiple of the local
work size. Ideally, the global work size is the same as the local work size as shown in the
following code snippet:

size_t global = 1;
size_t local = 1;
clEnqueueNDRangeKernel(world.command_queue, kernel, 1, nullptr,
 &global, &local, 2, write_events.data(),
 &kernel_events[0]));

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 234Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=234

RECOMMENDED: For the task parallel case, Xilinx recommends minimizing the calls to
clEnqueueTask. Ideally, you should finish all the workload in a single call to clEnqueueTask.

For more information on reducing overhead on kernel execution, see Kernel Execution.

Optimizing Data Movement
Figure 46: Optimizing Data Movement Flow

Optimize data movement that maximizes
utilization of PCIe link, DDR bank, on-chip

memories with only data transfer code

Run Software Emulation Verify Function
Correctness

Run Hardware Emulation

Analyze Kernel Compilation, Reports,
Profile Summary, Timeline Trace, Device

HW Transactions

Build and Run application on FPGA
acceleration card

Analyze Profile Summary
Analyze Timeline Trace

Data Movement Optimized

Goal met?

Goal met?

X22239-082719

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 235Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=235

In the OpenCL API, all data is transferred from the host memory to the global memory on the
device first and then from the global memory to the kernel for computation. The computation
results are written back from the kernel to the global memory and lastly from the global memory
to the host memory. A key factor in determining strategies for kernel optimization is
understanding how data can be efficiently moved around.

RECOMMENDED: Optimize the data movement in the application before optimizing computation.

During data movement optimization, it is important to isolate data transfer code from
computation code because inefficiency in computation might cause stalls in data movement.
Xilinx recommends that you modify the host code and kernels with data transfer code only for
this optimization step. The goal is to maximize the system level data throughput by maximizing
PCIe bandwidth usage and DDR bandwidth usage. It usually takes multiple iterations of running
software emulation, hardware emulation, as well as execution on FPGAs to achieve this goal.

Overlapping Data Transfers with Kernel Computation

Applications, such as database analytics, have a much larger data set than can be stored in the
available memory on the acceleration device. They require the complete data to be transferred
and processed in blocks. Techniques that overlap the data transfers with the computation are
critical to achieve high performance for these applications.

Below is the vadd kernel from the overlap example in the host category of Vitis Accelerated
Examples on GitHub.

#define BUFFER_SIZE 256
#define DATA_SIZE 1024

//TRIPCOUNT indentifier
const unsigned int c_len = DATA_SIZE / BUFFER_SIZE;
const unsigned int c_size = BUFFER_SIZE;

extern "C" {
void vadd(int *c, int *a, int *b, const int elements) {
 int arrayA[BUFFER_SIZE];
 int arrayB[BUFFER_SIZE];
 for (int i = 0; i < elements; i += BUFFER_SIZE) {
 #pragma HLS LOOP_TRIPCOUNT min=c_len max=c_len
 int size = BUFFER_SIZE;
 if (i + size > elements)
 size = elements - i;
 readA:
 for (int j = 0; j < size; j++) {
 #pragma HLS PIPELINE II=1
 #pragma HLS LOOP_TRIPCOUNT min=c_size max=c_size
 arrayA[j] = a[i + j];
 }

 readB:
 for (int j = 0; j < size; j++) {
 #pragma HLS PIPELINE II=1
 #pragma HLS LOOP_TRIPCOUNT min=c_size max=c_size
 arrayB[j] = b[i + j];

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 236Send Feedback

https://github.com/Xilinx/Vitis_Accel_Examples/tree/master/host/overlap
https://github.com/Xilinx/Vitis_Accel_Examples/tree/master/host
https://github.com/Xilinx/Vitis_Accel_Examples
https://github.com/Xilinx/Vitis_Accel_Examples
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=236

 }

 vadd_writeC:
 for (int j = 0; j < size; j++) {
 #pragma HLS PIPELINE II=1
 #pragma HLS LOOP_TRIPCOUNT min=c_size max=c_size
 c[i + j] = arrayA[j] + arrayB[j];
 }
 }
}
}

From the host perspective, there are four tasks to perform in this example:

1. Write buffer a (Wa)

2. Write buffer b (Wb)

3. Execute vadd kernel

4. Read buffer c (Rc)

Using an out-of-order command queue, data transfer and kernel execution can overlap as
illustrated in the figure below. In the host code for this example, double buffering is used for all
buffers so that the kernel can process one set of buffers while the host can operate on the other
set of buffers.

The OpenCL event object provides an easy method to set up complex operation dependencies
and synchronize host threads and device operations. Events are OpenCL objects that track the
status of operations. Event objects are created by kernel execution commands, read, write, copy
commands on memory objects or user events created using clCreateUserEvent. You can
ensure an operation has completed by querying events returned by these commands. The arrows
in the figure below show how event triggering can be set up to achieve optimal performance.

Figure 47: Event Triggering Set Up

Wa0 Wb0 Wa1 Wb2

vadd vadd

Rc0

vadd

Rc1

Wa0 Wb0 Wa1 Wb2

X22780-042519

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 237Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=237

The host code enqueues the four tasks in a loop to process the complete data set. It also sets up
event synchronization between different tasks to ensure that data dependencies are met for
each task. The double buffering is set up by passing different memory objects values to
clEnqueueMigrateMemObjects API. The event synchronization is achieved by having each
API call wait for other event as well as trigger its own event when the API completes.

// THIS PAIR OF EVENTS WILL BE USED TO TRACK WHEN A KERNEL IS FINISHED WITH
// THE INPUT BUFFERS. ONCE THE KERNEL IS FINISHED PROCESSING THE DATA, A NEW
// SET OF ELEMENTS WILL BE WRITTEN INTO THE BUFFER.
vector<cl::Event> kernel_events(2);
vector<cl::Event> read_events(2);
cl::Buffer buffer_a[2], buffer_b[2], buffer_c[2];

for (size_t iteration_idx = 0; iteration_idx < num_iterations; iteration_idx
++) {
 int flag = iteration_idx % 2;

 if (iteration_idx >= 2) {
 OCL_CHECK(err, err = read_events[flag].wait());
 }

 // Allocate Buffer in Global Memory
 // Buffers are allocated using CL_MEM_USE_HOST_PTR for efficient memory
and
 // Device-to-host communication
 std::cout << "Creating Buffers..." << std::endl;
 OCL_CHECK(err,
 buffer_a[flag] =
 cl::Buffer(context,
 CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
 bytes_per_iteration,
 &A[iteration_idx * elements_per_iteration],
 &err));
 OCL_CHECK(err,
 buffer_b[flag] =
 cl::Buffer(context,
 CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
 bytes_per_iteration,
 &B[iteration_idx * elements_per_iteration],
 &err));
 OCL_CHECK(err,
 buffer_c[flag] = cl::Buffer(
 context,
 CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR,
 bytes_per_iteration,
 &device_result[iteration_idx * elements_per_iteration],
 &err));

 vector<cl::Event> write_event(1);

 OCL_CHECK(err, err = krnl_vadd.setArg(0, buffer_c[flag]));
 OCL_CHECK(err, err = krnl_vadd.setArg(1, buffer_a[flag]));
 OCL_CHECK(err, err = krnl_vadd.setArg(2, buffer_b[flag]));
 OCL_CHECK(err, err = krnl_vadd.setArg(3, int(elements_per_iteration)));

 // Copy input data to device global memory
 std::cout << "Copying data (Host to Device)..." << std::endl;
 // Because we are passing the write_event, it returns an event object
 // that identifies this particular command and can be used to query
 // or queue a wait for this particular command to complete.
 OCL_CHECK(

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 238Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=238

 err,
 err = q.enqueueMigrateMemObjects({buffer_a[flag], buffer_b[flag]},
 0 /*0 means from host*/,
 NULL,
 &write_event[0]));
 set_callback(write_event[0], "ooo_queue");

 printf("Enqueueing NDRange kernel.\n");
 // This event needs to wait for the write buffer operations to complete
 // before executing. We are sending the write_events into its wait list
to
 // ensure that the order of operations is correct.
 //Launch the Kernel
 std::vector<cl::Event> waitList;
 waitList.push_back(write_event[0]);
 OCL_CHECK(err,
 err = q.enqueueNDRangeKernel(
 krnl_vadd, 0, 1, 1, &waitList, &kernel_events[flag]));
 set_callback(kernel_events[flag], "ooo_queue");

 // Copy Result from Device Global Memory to Host Local Memory
 std::cout << "Getting Results (Device to Host)..." << std::endl;
 std::vector<cl::Event> eventList;
 eventList.push_back(kernel_events[flag]);
 // This operation only needs to wait for the kernel call. This call will
 // potentially overlap the next kernel call as well as the next read
 // operations
 OCL_CHECK(err,
 err = q.enqueueMigrateMemObjects({buffer_c[flag]},
 CL_MIGRATE_MEM_OBJECT_HOST,
 &eventList,
 &read_events[flag]));
 set_callback(read_events[flag], "ooo_queue");

 OCL_CHECK(err, err = read_events[flag].wait());
}

The Application Timeline view below clearly shows that the data transfer time is completely
hidden, while the compute unit vadd_1 is running constantly.

Figure 48: Data Transfer Time Hidden in Application Timeline View

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 239Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=239

Buffer Memory Segmentation

Allocation and deallocation of memory buffers can lead to memory segmentation in the DDR
controllers. This might result in sub-optimal performance of compute units, even if they could
theoretically execute in parallel.

This issue occurs most often when multiple pthreads for different compute units are used and
the threads allocate and release many device buffers with different sizes every time they
enqueue the kernels. In this case, the timeline trace will exhibit gaps between kernel executions
and it might seem the processes are sleeping.

Each buffer allocated by runtime should be continuous in hardware. For large memory, it might
take some time to wait for that space to be freed, when many buffers are allocated and
deallocated. This can be resolved by allocating device buffer and reusing it between different
enqueues of a kernel.

For more details on optimizing memory performance, see Reading and Writing by Burst.

Compute Unit Scheduling
Scheduling kernel operations is key to overall system performance. This becomes even more
important when implementing multiple compute units (of the same kernel or of different kernels).
This section examines the different command queues responsible for scheduling the kernels.

Multiple In-Order Command Queues

The following figure shows an example with two in-order command queues, CQ0 and CQ1. The
scheduler dispatches commands from each queue in order, but commands from CQ0 and CQ1
can be pulled out by the scheduler in any order. You must manage synchronization between CQ0
and CQ1 if required.

Figure 49: Example with Two In-Order Command Queues

In-order CQ

Scheduler

Data Bus

Device
DMA

CU0

CU1
In-order CQ

X22781-091219

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 240Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=240

The following is code extracted from host.cpp of the concurrent_kernel_execution_c example
that sets up multiple in-order command queues and enqueues commands into each queue:

 OCL_CHECK(err,
 cl::CommandQueue ordered_queue1(
 context, device, CL_QUEUE_PROFILING_ENABLE, &err));
 OCL_CHECK(err,
 cl::CommandQueue ordered_queue2(
 context, device, CL_QUEUE_PROFILING_ENABLE, &err));
...

 printf("[Ordered Queue 1]: Enqueueing scale kernel\n");
 OCL_CHECK(
 err,
 err = ordered_queue1.enqueueNDRangeKernel(
 kernel_mscale, offset, global, local, nullptr,
&kernel_events[0]));

 set_callback(kernel_events[0], "scale");
...
 printf("[Ordered Queue 1]: Enqueueing addition kernel\n");
 OCL_CHECK(
 err,
 err = ordered_queue1.enqueueNDRangeKernel(
 kernel_madd, offset, global, local, nullptr,
&kernel_events[1]));

 set_callback(kernel_events[1], "addition");
...
 printf("[Ordered Queue 2]: Enqueueing matrix multiplication kernel\n");
 OCL_CHECK(
 err,
 err = ordered_queue2.enqueueNDRangeKernel(
 kernel_mmult, offset, global, local, nullptr,
&kernel_events[2]));
 set_callback(kernel_events[2], "matrix multiplication");

Single Out-of-Order Command Queue

The following figure shows an example with a single out-of-order command queue. The
scheduler can dispatch commands from the queue in any order. You must manually define event
dependencies and synchronizations as required.

Figure 50: Example with Single Out-of-Order Command Queue

Out-of-order CQ
Scheduler

PCIe

Device
DMA

CU0

CU1

X22783-042519

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 241Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/host/concurrent_kernel_execution_c
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=241

The following is code extracted from host.cpp of the concurrent_kernel_execution_c example
that sets up a single out-of-order command queue and enqueues commands as needed:

 OCL_CHECK(
 err,
 cl::CommandQueue ooo_queue(context,
 device,
 CL_QUEUE_PROFILING_ENABLE |

CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE,
 &err));

...
 printf("[OOO Queue]: Enqueueing scale kernel\n");
 OCL_CHECK(
 err,
 err = ooo_queue.enqueueNDRangeKernel(
 kernel_mscale, offset, global, local, nullptr, &ooo_events[0]));
 set_callback(ooo_events[0], "scale");
...
 // This is an out of order queue, events can be executed in any order.
Since
 // this call depends on the results of the previous call we must pass
the
 // event object from the previous call to this kernel's event wait list.
 printf("[OOO Queue]: Enqueueing addition kernel (Depends on scale)\n");

 kernel_wait_events.resize(0);
 kernel_wait_events.push_back(ooo_events[0]);

 OCL_CHECK(err,
 err = ooo_queue.enqueueNDRangeKernel(
 kernel_madd,
 offset,
 global,
 local,
 &kernel_wait_events, // Event from previous call
 &ooo_events[1]));
 set_callback(ooo_events[1], "addition");
...
 // This call does not depend on previous calls so we are passing nullptr
 // into the event wait list. The runtime should schedule this kernel in
 // parallel to the previous calls.
 printf("[OOO Queue]: Enqueueing matrix multiplication kernel\n");
 OCL_CHECK(err,
 err = ooo_queue.enqueueNDRangeKernel(
 kernel_mmult,
 offset,
 global,
 local,
 nullptr, // Does not depend on previous call
 &ooo_events[2]));
 set_callback(ooo_events[2], "matrix multiplication");

The Application Timeline view (as shown in the following figure) that the compute unit mmult_1
is running in parallel with the compute units mscale_1 and madd_1, using both multiple in-
order queues and single out-of-order queue methods.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 242Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/host/concurrent_kernel_execution_c
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=242

Figure 51: Application Timeline View Showing mult_1 Running with mscale_1 and
madd_1

Kernel Optimization
One of the key advantages of an FPGA is its flexibility and capacity to create customized designs
specifically for your algorithm. This enables various implementation choices to trade off
algorithm throughput versus power consumption. The following guidelines help manage the
design complexity and achieve the desired design goals.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 243Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=243

Optimizing Kernel Computation
Figure 52: Optimizing Kernel Computation Flow

Optimize kernels with both data
movement and computation code

following optimization guide

Run Software Emulation Verify
Function Correctness

Run Hardware Emulation

Analyze Kernel Compilation,
Reports, Profile Summary, Timeline

Trace, Device HW Transactions

Build and Run application on FPGA
acceleration card

Analyze Profile Summary
Analyze Timeline Trace

Application Optimized

Goal met?

Goal met?

X22240-082719

The goal of kernel optimization is to create processing logic that can consume all the data as
soon as it arrives at the kernel interfaces. The key metric is the initiation interval (II), or the
number of clock cycles before the kernel can accept new input data. Optimizing the II is generally
achieved by expanding the processing code to match the data path with techniques such as
function pipelining, loop unrolling, array partitioning, data flowing, etc. For more information on
kernel optimization, see Linking the Kernels.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 244Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=244

Interface Attributes (Detailed Kernel Trace)
The detailed kernel trace provides easy access to the AXI transactions and their properties. The
AXI transactions are presented for the global memory, as well as the Kernel side (Kernel "pass"
1:1:1) of the AXI interconnect. The following figure illustrates a typical kernel trace of a newly
accelerated algorithm.

Figure 53: Accelerated Algorithm Kernel Trace

Most interesting with respect to performance are the fields:

• Burst Length: Describes how many packages are sent within one transaction.

• Burst Size: Describes the number of bytes being transferred as part of one package.

Given a burst length of 1 and just 4 bytes per package, it will require many individual AXI
transactions to transfer any reasonable amount of data.

Note: The Vitis core development kit never creates burst sizes less than 4 bytes, even if smaller data is
transmitted. In this case, if consecutive items are accessed without AXI bursts enabled, it is possible to
observe multiple AXI reads to the same address.

Small burst lengths, as well as burst sizes, considerably less than 512 bits are therefore good
opportunities to optimize interface performance.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 245Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=245

Using Burst Data Transfers

Transferring data in bursts hides the memory access latency and improves bandwidth usage and
efficiency of the memory controller.

RECOMMENDED: Infer burst transfers from successive requests of data from consecutive address
locations. Refer to Reading and Writing by Burst for more details.

If burst data transfers occur, the detailed kernel trace will reflect the higher burst rate as a larger
burst length number:

Figure 54: Burst Data Transfer with Detailed Kernel Trace

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 246Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=246

In the previous figure, it is also possible to observe that the memory data transfers following the
AXI interconnect are actually implemented rather differently (shorter transaction time). Hover
over these transactions, you would see that the AXI interconnect has packed the 16 x 4 byte
transaction into a single package transaction of 1 x 64 bytes. This effectively uses the AXI4
bandwidth which is even more favorable. The next section focuses on this optimization
technique in more detail.

Burst inference is heavily dependent on coding style and access pattern. However, you can ease
burst detection and improve performance by isolating data transfer and computation, as shown
in the following code snippet:

void kernel(T in[1024], T out[1024]) {
 T tmpIn[1024];
 T tmpOu[1024];
 read(in, tmpIn);
 process(tmpIn, tmpOut);
 write(tmpOut, out);
}

In short, the function read is responsible for reading from the AXI input to an internal variable
(tmpIn). The computation is implemented by the function process working on the internal
variables tmpIn and tmpOut. The function write takes the produced output and writes to the
AXI output.

The isolation of the read and write function from the computation results in:

• Simple control structures (loops) in the read/write function which makes burst detection
simpler.

• The isolation of the computational function away from the AXI interfaces, simplifies potential
kernel optimization. See Kernel Optimization for more information.

• The internal variables are mapped to on-chip memory, which allow faster access compared to
AXI transactions. Acceleration platforms supported in the Vitis core development kit can have
as much as 10 MB on-chip memories that can be used as pipes, local memories, and private
memories. Using these resources effectively can greatly improve the efficiency and
performance of your applications.

Using Full AXI Data Width

The user data width between the kernel and the memory controller can be configured by the
Vitis compiler based on the data types of the kernel arguments. To maximize the data
throughput, Xilinx recommends that you choose data types map to the full data width on the
memory controller. The memory controller in all supported acceleration cards supports 512-bit
user interface, which can be mapped to OpenCL vector data types, such as int16 or C/C++
arbitrary precision data type ap_int<512>.

As shown on the following figure, you can observe burst AXI transactions (Burst Length 16) and a
512-bit package size (Burst Size 64 bytes).

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 247Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=247

Figure 55: Burst AXI Transactions

This example shows good interface configuration as it maximizes AXI data width as well as actual
burst transactions.

Complex structs or classes, used to declare interfaces, can lead to very complex hardware
interfaces due to memory layout and data packing differences. This can introduce potential
issues that are very difficult to debug in a complex system.

RECOMMENDED: Use simple structs for kernel arguments that can be packed to 32-bit boundary. Refer
to the Custom Data Type Example in kernel_to_gmem category at Xilinx Getting Started Example on
GitHub for the recommended method to use structs.

Setting Data Width Using OpenCL Attributes

The OpenCL API provides attributes to support a more automatic approach to incrementing AXI
data width usage. The change of the interface data types, as stated above is supported in the API
as well but will require the same code changes as C/C++ to the algorithm to accommodate the
larger input vector.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 248Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=248

To eliminate manual code modifications, the following OpenCL attributes are interpreted to
perform data path widening and vectorization of the algorithm:

• vec_type_hint

• reqd_work_group_size

• xcl_zero_global_work_offset

Examine the combined functionality on the following case:

__attribute__((reqd_work_group_size(64, 1, 1)))
__attribute__((vec_type_hint(int)))
__attribute__((xcl_zero_global_work_offset))
__kernel void vector_add(__global int* c, __global const int* a, __global
const int* b) {
 size_t idx = get_global_id(0);
 c[idx] = a[idx] + b[idx];
}

In this case, the hard coded interface is a 32-bit wide data path (int *c, int* a, int *b),
which drastically limits the memory throughput if implemented directly. However, the automatic
widening and transformation is applied, based on the values of the three attributes.

• __attribute__((vec_type_hint(int))): Declares that int is the main type used for
computation and memory transfer (32-bit). This knowledge is used to calculate the
vectorization/widening factor based on the target bandwidth of the AXI interface (512 bits).
In this example the factor would be 16 = 512 bits / 32-bit. This implies that in theory, 16
values could be processed if vectorization can be applied.

• __attribute__((reqd_work_group_size(X, Y, Z))): Defines the total number of
work items (where X, Y, and Z are positive constants). X*Y*Z is the maximum number of work
items therefore defining the maximum possible vectorization factor which would saturate the
memory bandwidth. In this example, the total number of work items is 64*1*1=64.

The actual vectorization factor to be applied will be the greatest common divider of the
vectorization factor defined by the actual coded type or the vec_type_hint, and the
maximum possible vectorization factor defined through reqd_work_group_size.

The quotient of maximum possible vectorization factor divided by the actual vectorization
factor provides the remaining loop count of the OpenCL description. As this loop is pipelined,
it can be advantageous to have several remaining loop iterations to take advantage of a
pipelined implementation. This is especially true if the vectorized OpenCL code has long
latency.

• __attribute__((xcl_zero_global_work_offset)): The
__attribute__((xcl_zero_global_work_offset)) instructs the compiler that no
global offset parameter is used at runtime, and all accesses are aligned. This gives the compiler
valuable information with regard to alignment of the work groups, which in turn usually
propagates to the alignment of the memory accesses (less hardware).

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 249Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=249

It should be noted, that the application of these transformations changes the actual design to be
synthesized. Partially unrolled loops require reshaping of local arrays in which data is stored. This
usually behaves nicely, but can interact poorly in rare situations.

For example:

• For partitioned arrays, when the partition factor is not divisible by the unrolling/vectorization
factor.

○ The resulting access requires a lot of multiplexers and will create a difficult issue for the
scheduler (might severely increase memory usage and compilation time). Xilinx
recommends using partitioning factors that are powers of two (as the vectorization factor
is always a power of two).

• If the loop being vectorized has an unrelated resource constraint, the scheduler complains
about II not being met.

○ This is not necessarily correlated with a loss of performance (usually it is still performing
better) because the II is computed on the unrolled loop (which has therefore a multiplied
throughput for each iteration).

○ The scheduler informs you of the possible resources constraints and resolving those will
further improve the performance.

○ Note that a common occurrence is that a local array does not get automatically reshaped
(usually because it is accessed in a later section of the code in non-vectorizable method).

Reducing Kernel to Kernel Communication Latency with OpenCL
Pipes

The OpenCL API 2.0 specification introduces a new memory object called a pipe. A pipe stores
data organized as a FIFO. Pipe objects can only be accessed using built-in functions that read
from and write to a pipe. Pipe objects are not accessible from the host. Pipes can be used to
stream data from one kernel to another inside the FPGA without having to use the external
memory, which greatly improves the overall system latency. For more information, see Pipe
Functions on Version 2.0 of the OpenCL C Specification from Khronos Group.

In the Vitis IDE, pipes must be statically defined outside of all kernel functions. Dynamic pipe
allocation using the OpenCL 2.x clCreatePipe API is not supported. The depth of a pipe must
be specified by using the OpenCL attribute xcl_reqd_pipe_depth in the pipe declaration. For
more information, see xcl_reqd_pipe_depth.

As specified in xcl_reqd_pipe_depth, the valid depth values are as follows: 16, 32, 64, 128,
256, 512, 1024, 2048, 4096, 8192, 16384, 32768.

A given pipe can have one and only one producer and consumer in different kernels.

pipe int p0 __attribute__((xcl_reqd_pipe_depth(32)));

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 250Send Feedback

https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml/pipeFunctions.html
https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml/pipeFunctions.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=250

Pipes can be accessed using the Xilinx extended read_pipe_block() and
write_pipe_block() functions in blocking mode.

TIP: Reading or writing to pipes using the non-blocking read_pipe()  or write_pipe()  functions is
not supported.

The status of pipes can be queried using OpenCL get_pipe_num_packets() and
get_pipe_max_packets() built-in functions.

The following function signatures are the currently supported pipe functions, where gentype
indicates the built-in OpenCL C scalar integer or floating-point data types.

int read_pipe_block (pipe gentype p, gentype *ptr)
int write_pipe_block (pipe gentype p, const gentype *ptr)

The following “dataflow/dataflow_pipes_ocl” from Xilinx Getting Started Examples on GitHub
uses pipes to pass data from one processing stage to the next using blocking
read_pipe_block() and write_pipe_block() functions:

pipe int p0 __attribute__((xcl_reqd_pipe_depth(32)));
pipe int p1 __attribute__((xcl_reqd_pipe_depth(32)));
// Input Stage Kernel : Read Data from Global Memory and write into Pipe P0
kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void input_stage(__global int *input, int size)
{
 __attribute__((xcl_pipeline_loop))
 mem_rd: for (int i = 0 ; i < size ; i++)
 {
 //blocking Write command to pipe P0
 write_pipe_block(p0, &input[i]);
 }
}
// Adder Stage Kernel: Read Input data from Pipe P0 and write the result
// into Pipe P1
kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void adder_stage(int inc, int size)
{
 __attribute__((xcl_pipeline_loop))
 execute: for(int i = 0 ; i < size ; i++)
 {
 int input_data, output_data;
 //blocking read command to Pipe P0
 read_pipe_block(p0, &input_data);
 output_data = input_data + inc;
 //blocking write command to Pipe P1
 write_pipe_block(p1, &output_data);
 }
}
// Output Stage Kernel: Read result from Pipe P1 and write the result to
Global
// Memory
kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void output_stage(__global int *output, int size)
{
 __attribute__((xcl_pipeline_loop))
 mem_wr: for (int i = 0 ; i < size ; i++)

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 251Send Feedback

https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml/get_pipe_num_packets.html
https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml/get_pipe_max_packets.html
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/dataflow/dataflow_pipes_ocl
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=251

 {
 //blocking read command to Pipe P1
 read_pipe_block(p1, &output[i]);
 }
}

The Device Traceline view shows the detailed activities and stalls on the OpenCL pipes after
hardware emulation is run. This information can be used to choose the correct FIFO sizes to
achieve the optimal application area and performance.

Figure 56: Device Traceline View

Optimizing Computational Parallelism
By default, C/C++ does not model computational parallelism, as it always executes any algorithm
sequentially. On the other hand, the OpenCL API does model computational parallelism with
respect to work groups, but it does not use any additional parallelism within the algorithm
description. However, fully configurable computational engines like FPGAs allow more freedom
to exploit computational parallelism.

Coding Data Parallelism

To leverage computational parallelism during the implementation of an algorithm on the FPGA, it
should be mentioned that the synthesis tool will need to be able to recognize computational
parallelism from the source code first. Loops and functions are prime candidates for reflecting
computational parallelism and compute units in the source description. However, even in this
case, it is key to verify that the implementation takes advantage of the computational parallelism
as in some cases the Vitis technology might not be able to apply the desired transformation due
to the structure of the source code.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 252Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=252

It is quite common, that some computational parallelism might not be reflected in the source
code to begin with. In this case, it will need to be added. A typical example is a kernel that might
be described to operate on a single input value, while the FPGA implementation might execute
computations more efficiently in parallel on multiple values. This kind of parallel modeling is
described in Using Full AXI Data Width . A 512-bit interface can be created using OpenCL vector
data types such as int16 or C/C++ arbitrary precision data type ap_int<512>.

Note: These vector types can also be used as a powerful way to model data parallelism within a kernel,
with up to 16 data paths operating in parallel in case of int16. Refer to the Median Filter Example in the
vision category at Xilinx Getting Started Example on GitHub for the recommended method to use vectors.

Loop Parallelism

Loops are the basic C/C++/OpenCL API method of representing repetitive algorithmic code. The
following example illustrates various implementation aspects of a loop structure:

 for(int i = 0; i<255; i++) {
 out[i] = in[i]+in[i+1];
 }
 out[255] = in[255];

This code iterates over an array of values and adds consecutive values, except the last value. If
this loop is implemented as written, each loop iteration requires two cycles for implementation,
which results in a total of 510 cycles for implementation. This can be analyzed in detail through
the Schedule Viewer in the HLS Project:

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 253Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=253

Figure 57: Implemented Loop Structure in Schedule Viewer

This can also be analyzed in terms of total numbers and latency through the Vivado synthesis
results:

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 254Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=254

Figure 58: Synthesis Results Performance Estimates

The key numbers here are the latency numbers and total LUT usage. For example, depending on
the configuration, you could get latency of 511 and total LUT usage of 47. As a result, these
values can vary based on the implementation choices. While this implementation will require
very little area, it results in significant latency.

Unrolling Loops

Unrolling a loop enables the full parallelism of the model to be used. To perform this, mark a loop
to be unrolled and the tool will create the implementation with the most parallelism possible. To
mark a loop to unroll, an OpenCL loop can be marked with the UNROLL attribute:

__attribute__((opencl_unroll_hint))

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 255Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=255

Or a C/C++ loop can use the unroll pragma:

#pragma HLS UNROLL

For more information, see Loop Unrolling.

When applied to this specific example, the Schedule Viewer in the HLS Project will be:

Figure 59: Schedule Viewer

The following figure shows the estimated performance:

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 256Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=256

Figure 60: Performance Estimates

Therefore, the total latency was considerably improved to be 127 cycles and as expected the
computational hardware was increased to 4845 LUTs, to perform the same computation in
parallel.

However, if you analyze the for-loop, you might ask why this algorithm cannot be implemented in
a single cycle, as each addition is completely independent of the previous loop iteration. The
reason is the memory interface is used for the variable out. The Vitis core development kit uses
dual port memory by default for an array. However, this implies that at most two values can be
written to the memory per cycle. Thus to see a fully parallel implementation, you must specify
that the variable out should be kept in registers as in this example:

#pragma HLS array_partition variable= out complete dim= 0

For more information, see pragma HLS array_partition.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 257Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=gle1504034361378
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=257

The results of this transformation can be observed in the following Schedule Viewer:

Figure 61: Transformation Results in Schedule Viewer

The associated estimates are:

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 258Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=258

Figure 62: Transformation Results Performance Estimates

Accordingly, this code can be implemented as a combinatorial function requiring only a fraction
of the cycle to complete.

Pipelining Loops

Pipelining loops allow you to overlap iterations of a loop in time, as discussed in Loop Pipelining .
Allowing loop iterations to operate concurrently is often a good approach, as resources can be
shared between iterations (less resource utilization), while requiring less execution time
compared to loops that are not unrolled.

Pipelining is enabled in C/C++ through the pragma HLS pipeline:

#pragma HLS PIPELINE

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 259Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=fde1504034360078
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=259

While the OpenCL API uses the xcl_pipeline_loop attribute:

__attribute__((xcl_pipeline_loop))

Note: The OpenCL API has an additional method of specifying loop pipelining, see xcl_pipeline_workitems.
The reason is the work item loops are not explicitly stated and pipelining these loops require this attribute:

__attribute__((xcl_pipeline_workitems))

In this example, the Schedule Viewer in the HLS Project produces the following information:

Figure 63: Pipelining Loops in Schedule Viewer

With the overall estimates being:

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 260Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=260

Figure 64: Performance Estimates

Because each iteration of a loop consumes only two cycles of latency, there can only be a single
iteration overlap. This enables the total latency to be cut into half compared to the original,
resulting in 257 cycles of total latency. However, this reduction in latency was achieved using
fewer resources when compared to unrolling.

In most cases, loop pipelining by itself can improve overall performance. Yet, the effectiveness of
the pipelining depends on the structure of the loop. Some common limitations are:

• Resources with limited availability such as memory ports or process channels can limit the
overlap of the iterations (Initiation Interval).

• Loop-carry dependencies, such as those created by variable conditions computed in one
iteration affecting the next, might increase the II of the pipeline.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 261Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=261

These are reported by the tool during high-level synthesis and can be observed and examined in
the Schedule Viewer. For the best possible performance, the code might have to be modified to
remove these limiting factors, or the tool needs to be instructed to eliminate some dependency
by restructuring the memory implementation of an array, or breaking the dependencies all
together.

Task Parallelism

Task parallelism allows you to take advantage of dataflow parallelism. In contrast to loop
parallelism, when task parallelism is deployed, full execution units (tasks) are allowed to operate
in parallel taking advantage of extra buffering introduced between the tasks.

See the following example:

void run (ap_uint<16> in[1024],
 ap_uint<16> out[1024]
) {
 ap_uint<16> tmp[128];
 for(int i = 0; i<8; i++) {
 processA(&(in[i*128]), tmp);
 processB(tmp, &(out[i*128]));
 }
}

When this code is executed, the function processA and processB are executed sequentially
128 times in a row. Given the combined latency for processA and processB, the loop is set to
278 and the total latency can be estimated as:

Figure 65: Performance Estimates

The extra cycle is due to loop setup and can be observed in the Schedule Viewer.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 262Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=262

For C/C++ code, task parallelism is performed by adding the DATAFLOW pragma into the for-
loop:

#pragma HLS DATAFLOW

For OpenCL API code, add the attribute before the for-loop:

__attribute__ ((xcl_dataflow))

Refer to Dataflow Optimization, HLS Pragmas, and OpenCL Attributes for more details on this
topic.

As illustrated by the estimates in the HLS report, applying the transformation will considerably
improve the overall performance effectively using a double (ping pong) buffer scheme between
the tasks:

Figure 66: Performances Estimates

The overall latency of the design has almost halved in this case due to concurrent execution of
the different tasks of the different iterations. Given the 139 cycles per processing function and
the full overlap of the 128 iterations, this allows the total latency to be:

(1x only processA + 127x both processes + 1x only processB) * 139 cycles =
17931 cycles

Using task parallelism is a powerful method to improve performance when it comes to
implementation. However, the effectiveness of applying the DATAFLOW pragma to a specific and
arbitrary piece of code might vary vastly. It is often necessary to look at the execution pattern of
the individual tasks to understand the final implementation of the DATAFLOW pragma. Finally, the
Vitis core development kit provides the Detailed Kernel Trace, which illustrates concurrent
execution.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 263Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=263

Figure 67: Detailed Kernel Trace

For this Detailed Kernel Trace, the tool displays the start of the dataflow loop, as shown in the
previous figure. It illustrates how processA is starting up right away with the beginning of the
loop, while processB waits until the completion of the processA before it can start up its first
iteration. However, while processB completes the first iteration of the loop, processA begins
operating on the second iteration, etc.

A more abstract representation of this information is presented in Application Timeline for the
host and device activity.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 264Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=264

Optimizing Compute Units
Data Width

One, if not the most important aspect for performance is the data width required for the
implementation. The tool propagates port widths throughout the algorithm. In some cases,
especially when starting out with an algorithmic description, the C/C++/OpenCL API code might
only use large data types such as integers even at the ports of the design. However, as the
algorithm is mapped to a fully configurable implementation, smaller data types such as 10-/12-
bit might often suffice. It is beneficial to check the size of basic operations in the HLS Synthesis
report during optimization.

In general, when the Vitis core development kit maps an algorithm onto the FPGA, more
processing is required to comprehend the C/C++/OpenCL API structure and extract operational
dependencies. Therefore, to perform this mapping the Vitis core development kit generally
partitions the source code into operational units which are then mapped onto the FPGA. Several
aspects influence the number and size of these operational units (ops) as seen by the tool.

In the following figure, the basic operations and their bit-width are reported.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 265Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=265

Figure 68: Operations Utilization Estimates

Look for bit widths of 16, 32, and 64 bits commonly used in algorithmic descriptions and verify
that the associated operation from the C/C++/OpenCL API source actually requires the bit width
to be this large. This can considerably improve the implementation of the algorithm, as smaller
operations require less computation time.

Fixed Point Arithmetic

Some applications use floating point computation only because they are optimized for other
hardware architecture. Using fixed point arithmetic for applications like deep learning can save
the power efficiency and area significantly while keeping the same level of accuracy.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 266Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=266

RECOMMENDED: Xilinx recommends exploring fixed point arithmetic for your application before
committing to using floating point operations.

Macro Operations

It is sometimes advantageous to think about larger computational elements. The tool will operate
on the source code independently of the remaining source code, effectively mapping the
algorithm without consideration of surrounding operations onto the FPGA. When applied, the
Vitis technology keeps operational boundaries, effectively creating macro operations for specific
code. This uses the following principles:

• Operational locality to the mapping process

• Reduction in complexity for the heuristics

This might create vastly different results when applied. In C/C++, macro operations are created
with the help of #pragma HLS inline off. While in the OpenCL API, the same kind of
macro operation can be generated by not specifying the following attribute when defining a
function:

__attribute__((always_inline))

For more information, see pragma HLS inline.

Using Optimized Libraries

The OpenCL specification provides many math built-in functions. All math built-in functions with
the native_ prefix are mapped to one or more native device instructions and will typically have
better performance compared to the corresponding functions (without the native_ prefix). The
accuracy and in some cases the input ranges of these functions is implementation-defined. In the
Vitis technology, these native_ built-in functions use the equivalent functions in the Vitis HLS
tool Math library, which are already optimized for Xilinx FPGAs in terms of area and
performance.

RECOMMENDED: Xilinx recommends using native_  built-in functions or the HLS tool Math library if
the accuracy meets the application requirement.

Optimizing Memory Architecture
Memory architecture is a key aspect of implementation. Due to the limited access bandwidth, it
can heavily impact the overall performance, as shown in the following example:

void run (ap_uint<16> in[256][4],
 ap_uint<16> out[256]
) {
 ...
 ap_uint<16> inMem[256][4];

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 267Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=jka1504034359550
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=267

 ap_uint<16> outMem[256];

 ... Preprocess input to local memory

 for(int j=0; j<256; j++) {
 #pragma HLS PIPELINE OFF
 ap_uint<16> sum = 0;
 for(int i = 0; i<4; i++) {

 sum += inMem[j][i];
 }
 outMem[j] = sum;
 }

 ... Postprocess write local memory to output
}

This code adds the four values associated with the inner dimension of the two dimensional input
array. If implemented without any additional modifications, it results in the following estimates:

Figure 69: Performance Estimates

The overall latency of 4608 (Loop 2) is due to 256 iterations of 18 cycles (16 cycles spent in the
inner loop, plus the reset of sum, plus the output being written). This is observed in the Schedule
Viewer in the HLS Project. The estimates become considerably better when unrolling the inner
loop.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 268Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=268

Figure 70: Performance Estimates

However, this improvement is largely because of the process using both ports of a dual port
memory. This can be seen from the Schedule Viewer in the HLS Project:

Figure 71: Schedule Viewer

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 269Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=269

Two read operations are performed per cycle to access all the values from the memory to
calculate the sum. This is often an undesired result as this completely blocks the access to the
memory. To further improve the results, the memory can be split into four smaller memories
along the second dimension:

#pragma HLS ARRAY_PARTITION variable=inMem complete dim=2

For more information, see pragma HLS array_partition.

This results in four array reads, all executed on different memories using a single port:

Figure 72: Executed Four Arrays Results

Using a total of 256 * 4 cycles = 1024 cycles for loop 2.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 270Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=gle1504034361378
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=270

Figure 73: Performance Estimates

Alternatively, the memory can be reshaped into to a single memory with four words in parallel.
This is performed through the pragma:

#pragma HLS array_reshape variable=inMem complete dim=2

For more information, see pragma HLS array_reshape.

This results in the same latency as when the array partitioning, but with a single memory using a
single port:

Figure 74: Latency Result

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 271Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=mrl1504034361747
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=271

Although, either solution creates comparable results with respect to overall latency and
utilization, reshaping the array results in cleaner interfaces and less routing congestion making
this the preferred solution.

Note: This completes array optimization, in a real design the latency could be further improved by
employing loop parallelism (see Loop Parallelism).

void run (ap_uint<16> in[256][4],
 ap_uint<16> out[256]
) {
 ...

 ap_uint<16> inMem[256][4];
 ap_uint<16> outMem[256];
 #pragma HLS array_reshape variable=inMem complete dim=2

 ... Preprocess input to local memory

 for(int j=0; j<256; j++) {
 #pragma HLS PIPELINE OFF
 ap_uint<16> sum = 0;
 for(int i = 0; i<4; i++) {
 #pragma HLS UNROLL
 sum += inMem[j][i];
 }
 outMem[j] = sum;
 }

 ... Postprocess write local memory to output

}

Kernel SLR and DDR Memory Assignments
Kernel compute unit (CU) instance and DDR memory resource floorplanning are keys to meeting
quality of results of your design in terms of frequency and resources. Floorplanning involves
explicitly allocating CUs (a kernel instance) to SLRs and mapping CUs to DDR memory resources.
When floorplanning, both CU resource usage and DDR memory bandwidth requirements need to
be considered.

The largest Xilinx FPGAs are made up of multiple stacked silicon dies. Each stack is referred to as
a super logic region (SLR) and has a fixed amount of resources and memory including DDR
interfaces. Available device SLR resources which can be used for custom logic can be found in
the Vitis 2020.1 Software Platform Release Notes, or can be displayed using the platforminfo
utility described in platforminfo Utility.

You can use the actual kernel resource utilization values to help distribute CUs across SLRs to
reduce congestion in any one SLR. The system estimate report lists the number of resources
(LUTs, Flip-Flops, BRAMs, etc.) used by the kernels early in the design cycle. The report can be
generated during hardware emulation and system compilation through the command line or GUI
and is described in System Estimate Report.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 272Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=272

Use this information along with the available SLR resources to help assign CUs to SLRs such that
no one SLR is over-utilized. The less congestion in an SLR, the better the tools can map the
design to the FPGA resources and meet your performance target. For mapping memory
resources and CUs, see Mapping Kernel Ports to Global Memory and Assigning Compute Units to
SLRs.

Note: While compute units can be connected to any available DDR memory resource, it is also necessary to
account for the bandwidth requirements of the kernels when assigning to SLRs.

After allocating your CUs to SLRs, map any CU master AXI port(s) to DDR memory resources.
Xilinx recommends connecting to a DDR memory resource in the same SLR as the CU. This
reduces competition for the limited SLR-crossing connection resources. In addition, connections
between SLRs use super long line (SLL) routing resources, which incurs a greater delay than a
standard intra-SLR routing.

It might be necessary to cross an SLR region to connect to a DDR resource in a different SLR.
However, if both the connectivity.sp and the connectivity.slr directives are explicitly
defined, the tools automatically add additional crossing logic to minimize the effect of the SLL
delay, and facilitates better timing closure.

Guidelines for Kernels that Access Multiple Memory Banks

The DDR memory resources are distributed across the super logic regions (SLRs) of the platform.
Because the number of connections available for crossing between SLRs is limited, the general
guidance is to place a kernel in the same SLR as the DDR memory resource with which it has the
most connections. This reduces competition for SLR-crossing connections and avoids consuming
extra logic resources associated with SLR crossing.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 273Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=273

Figure 75: Kernel and Memory in Same SLR

Memory Bank 3

Memory Bank 2

Memory Bank 1

Memory Bank 0Kernel

SLR1

 SLR0

Memory Bank 3

Memory Bank 2

Memory Bank 1

Memory Bank 0Kernel

SLR1

 SLR0

X22194-010919

Note: The image on the left shows a single AXI interface mapped to a single memory bank. The image on
the right shows multiple AXI interfaces mapped to the same memory bank.

As shown in the previous figure, when a kernel has a single AXI interface that maps only a single
memory bank, the platforminfo utility described in platforminfo Utility lists the SLR that is
associated with the memory bank of the kernel; therefore, the SLR where the kernel would be
best placed. In this scenario, the design tools might automatically place the kernel in that SLR
without need for extra input; however, you might need to provide an explicit SLR assignment for
some of the kernels under the following conditions:

• If the design contains a large number of kernels accessing the same memory bank.

• A kernel requires some specialized logic resources that are not available in the SLR of the
memory bank.

When a kernel has multiple AXI interfaces and all of the interfaces of the kernel access the same
memory bank, it can be treated in a very similar way to the kernel with a single AXI interface, and
the kernel should reside in the same SLR as the memory bank that its AXI interfaces are mapping.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 274Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=274

Figure 76: Memory Bank in Adjoining SLR

Memory Bank 3

Memory Bank 2

Memory Bank 1

Memory Bank 0Kernel

SLR1

 SLR0

Memory Bank 3

Memory Bank 2

Memory Bank 1

Memory Bank 0

Kernel

SLR1

 SLR0

X22195-010919

Note: The image on the left shows one SLR crossing is required when the kernel is placed in SLR0. The
image on the right shows two SLR crossings are required for kernel to access memory banks.

When a kernel has multiple AXI interfaces to multiple memory banks in different SLRs, the
recommendation is to place the kernel in the SLR that has the majority of the memory banks
accessed by the kernel (shown it the figure above). This minimizes the number of SLR crossings
required by this kernel which leaves more SLR crossing resources available for other kernels in
your design to reach your memory banks.

When the kernel is mapping memory banks from different SLRs, explicitly specify the SLR
assignment as described in Kernel SLR and DDR Memory Assignments.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 275Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=275

Figure 77: Memory Banks Two SLRs Away

Memory Bank 3

Memory Bank 2

Memory Bank 1

Memory Bank 0

Kernel

SLR2

 SLR1

 SLR0

Memory Bank 3

Memory Bank 2

Memory Bank 1

Memory Bank 0Kernel

SLR2

 SLR1

 SLR0

X22196-010919

Note: The image on the left shows two SLR crossings are required to access all of the mapped memory
banks. The image on the right shows three SLR crossings are required to access all of the mapped memory
banks.

As shown in the previous figure, when a platform contains more than two SLRs, it is possible that
the kernel might map a memory bank that is not in the immediately adjacent SLR to its most
commonly mapped memory bank. When this scenario arises, memory accesses to the distant
memory bank must cross more than one SLR boundary and incur additional SLR-crossing
resource costs. To avoid such costs it might be better to place the kernel in an intermediate SLR
where it only requires less expensive crossings into the adjacent SLRs.

Exploring Kernel Optimizations Using Vitis HLS
All kernel optimizations using OpenCL or C/C++ can be performed from within the Vitis core
development kit. The primary performance optimizations, such as those discussed in this section
(pipelining function and loops, applying dataflow to enable greater concurrency between
functions and loops, unrolling loops, etc.), are performed by the Vitis HLS tool.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 276Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=276

The Vitis core development kit automatically calls the HLS tool. However, to use the GUI analysis
capabilities, you must launch the HLS tool directly from within the Vitis technology. Using the
HLS tool in standalone mode, as discussed in Compiling Kernels with Vitis HLS, enables the
following enhancements to the optimization methodology:

• The ability to focus solely on the kernel optimization because there is no requirement to
execute emulation.

• The skill to create multiple solutions, compare their results, and explore the solution space to
find the most optimum design.

• The competence to use the interactive Analysis Perspective to analyze the design
performance.

IMPORTANT! Only the kernel source code is incorporated back into the Vitis core development kit. After
exploring the optimization space, ensure that all optimizations are applied to the kernel source code as
OpenCL attributes or C/C++ pragmas.

To open the HLS tool in standalone mode, from the Assistant window, right-click the hardware
function object, and select Open HLS Project, as shown in the following figure.

Figure 78: Open HLS Project

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 277Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=277

Topological Optimization
This section focuses on the topological optimization. It looks at the attributes related to the
rough layout and implementation of multiple compute units and their impact on performance.

Multiple Compute Units
Depending on available resources on the target device, multiple compute units of the same
kernel (or different kernels) can be created to run in parallel, which improves the system
processing time and throughput. For more details, see Creating Multiple Instances of a Kernel.

Using Multiple DDR Banks
Acceleration cards supported in Vitis technology provide one, two, or four DDR banks, and up to
80 GB/s raw DDR bandwidth. For kernels moving large amount of data between the FPGA and
the DDR, Xilinx® recommends that you direct the Vitis compiler and runtime library to use
multiple DDR banks.

In addition to DDR banks, the host application can access PLRAM to transfer data directly to a
kernel. This feature is enabled using the connnectivity.sp option in a configuration file
specified with the v++ --config option. Refer to Mapping Kernel Ports to Global Memory for
more information on implementing this optimization and Memory Mapped Interfaces on data
transfer to the global memory banks.

To take advantage of multiple DDR banks, you need to assign CL memory buffers to different
banks in the host code as well as configure the xclbin file to match the bank assignment in v++
command line.

The following block diagram shows the Global Memory Two Banks (C) example in Vitis Examples
on GitHub. This example connects the input pointer interface of the kernel to DDR bank 0, and
the output pointer interface to DDR bank 1.

Figure 79: Global Memory Two Banks Example

*input

Kernel

*output

Memory
Interconnect/

Controller

Memory
Interconnect/

Controller

DDR0

DDR1

X23167-082719

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 278Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/kernel_to_gmem/gmem_2banks_c
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=278

Assigning DDR Bank in Host Code

Bank assignment in host code is supported by Xilinx vendor extension. The following code
snippet shows the header file required, as well as assigning input and output buffers to DDR
bank 0 and bank 1, respectively:

#include <CL/cl_ext.h>
…
int main(int argc, char** argv)
{
…
 cl_mem_ext_ptr_t inExt, outExt; // Declaring two extensions for both
buffers
 inExt.flags = 0|XCL_MEM_TOPOLOGY; // Specify Bank0 Memory for input
memory
 outExt.flags = 1|XCL_MEM_TOPOLOGY; // Specify Bank1 Memory for output
Memory
 inExt.obj = 0 ; outExt.obj = 0; // Setting Obj and Param to Zero
 inExt.param = 0 ; outExt.param = 0;

 int err;
 //Allocate Buffer in Bank0 of Global Memory for Input Image using
Xilinx Extension
 cl_mem buffer_inImage = clCreateBuffer(world.context, CL_MEM_READ_ONLY
| CL_MEM_EXT_PTR_XILINX,
 image_size_bytes, &inExt, &err);
 if (err != CL_SUCCESS){
 std::cout << "Error: Failed to allocate device Memory" << std::endl;
 return EXIT_FAILURE;
 }
 //Allocate Buffer in Bank1 of Global Memory for Input Image using
Xilinx Extension
 cl_mem buffer_outImage = clCreateBuffer(world.context,
CL_MEM_WRITE_ONLY | CL_MEM_EXT_PTR_XILINX,
 image_size_bytes, &outExt, NULL);
 if (err != CL_SUCCESS){
 std::cout << "Error: Failed to allocate device Memory" << std::endl;
 return EXIT_FAILURE;
 }
…
}

cl_mem_ext_ptr_t is a struct as defined below:

typedef struct{
 unsigned flags;
 void *obj;
 void *param;
 } cl_mem_ext_ptr_t;

• Valid values for flags are:

○ XCL_MEM_DDR_BANK0

○ XCL_MEM_DDR_BANK1

○ XCL_MEM_DDR_BANK2

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 279Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=279

○ XCL_MEM_DDR_BANK3

○ <id> | XCL_MEM_TOPOLOGY

Note: The <id> is determined by looking at the Memory Configuration section in the
xxx.xclbin.info file generated next to the xxx.xclbin file. In the xxx.xclbin.info file,
the global memory (DDR, PLRAM, etc.) is listed with an index representing the <id>.

• obj is the pointer to the associated host memory allocated for the CL memory buffer only if
CL_MEM_USE_HOST_PTR flag is passed to clCreateBuffer API, otherwise set it to NULL.

• param is reserved for future use. Always assign it to 0 or NULL.

Assigning Global Memory for Kernel Code

Creating Multiple AXI Interfaces

OpenCL kernels, C/C++ kernels, and RTL kernels have different methods for assigning function
parameters to AXI interfaces.

• For OpenCL kernels, the --max_memory_ports option is required to generate one AXI4
interface for each global pointer on the kernel argument. The AXI4 interface name is based on
the order of the global pointers on the argument list.

The following code is taken from the example gmem_2banks_ocl in the ocl_kernels
category from the Vitis Accel Examples on GitHub:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void apply_watermark(__global const TYPE * __restrict input,
__global TYPE * __restrict output, int width, int height) {
 ...
}

In this example, the first global pointer input is assigned an AXI4 name M_AXI_GMEM0, and
the second global pointer output is assigned a name M_AXI_GMEM1.

• For C/C++ kernels, multiple AXI4 interfaces are generated by specifying different “bundle”
names in the HLS INTERFACE pragma for different global pointers. Refer to Kernel Interfaces
for more information.

The following is a code snippet from the gmem_2banks example that assigns the input
pointer to the bundle gmem0 and the output pointer to the bundle gmem1. The bundle name
can be any valid C string, and the AXI4 interface name generated will be
M_AXI_<bundle_name>. For this example, the input pointer will have AXI4 interface name
as M_AXI_gmem0, and the output pointer will have M_AXI_gmem1. Refer to pragma HLS
interface for more information.

#pragma HLS INTERFACE m_axi port=input offset=slave bundle=gmem0
#pragma HLS INTERFACE m_axi port=output offset=slave bundle=gmem1

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 280Send Feedback

https://github.com/Xilinx/Vitis_Accel_Examples
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=jit1504034365862
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=jit1504034365862
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=280

• For RTL kernels, the port names are generated during the import process by the RTL kernel
wizard. The default names proposed by the RTL kernel wizard are m00_axi and m01_axi. If
not changed, these names have to be used when assigning a DDR bank through the
connectivity.sp option in the configuration file. Refer to Mapping Kernel Ports to Global
Memory for more information.

Assigning AXI Interfaces to DDR Banks

IMPORTANT! When using more than one DDR interface, Xilinx requires you to specify the DDR memory
bank for each kernel/CU, and specify the SLR to place the kernel into. For more information, see Mapping
Kernel Ports to Global Memory and Assigning Compute Units to SLRs.

The following is an example configuration file that specifies the connectivity.sp option, and
the v++ command line that connects the input pointer (M_AXI_GMEM0) to DDR bank 0 and the
output pointer (M_AXI_GMEM1) to DDR bank 1:

The config_sp.txt file:

[connectivity]
sp=apply_watermark_1.m_axi_gmem0:DDR[0]
sp=apply_watermark_1.m_axi_gmem1:DDR[1]

The v++ command line:

v++ apply_watermark --config config_sp.txt

You can use the Device Hardware Transaction view to observe the actual DDR Bank
communication, and to analyze DDR usage.

Figure 80: Device Hardware Transaction View Transactions on DDR Bank

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 281Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=281

Assigning AXI Interfaces to PLRAM

Some platforms support PLRAMs. In these cases, use the same --connectivity.sp option as
described in Assigning AXI Interfaces to DDR Banks, but use the name, PLRAM[id]. Valid names
supported by specific platforms can be found in the Memory Configuration section of the
xclibin.info file generated alongside xclbin.

Assigning Kernels to SLR Regions

Assigning ports to global memory banks requires the kernel to be physically routed on the FPGA,
to connect to the assigned DDR, HBM, or block RAM. Currently, large FPGAs use stacked silicon
devices with several super logic regions (SLRs). By default, the Vitis core development kit will
place the compute units in the same SLR as the target platform. This is not always desirable,
especially when the kernel connects to specific memory banks in a different SLR region. In this
case, you will want to manually assign the kernel instance, or CU into the same SLR as the global
memory. For more information, see Mapping Kernel Ports to Global Memory.

You can assign the CU instance to an SLR using the connectivity.slr option described in
Assigning Compute Units to SLRs.

TIP: To better understand the platform attributes, such as the number of DDRs and SLR regions, you can
detail the target platform using the platforminfo  command described in platforminfo Utility.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 20: Optimizing the Performance

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 282Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=282

Chapter 21

Debugging Applications and
Kernels

The Vitis™ unified software platform provides application-level debug features and techniques
that allow the host code, kernel code, and the interactions between them to be debugged. These
features and techniques are split between software debugging and hardware debugging flows.

For software debugging, the host and kernel code can be debugged using the Vitis IDE, or using
GDB from the command line as a standard debug tool.

For hardware debugging, kernels running on hardware can be debugged using Xilinx® virtual
cable (XVC) running over the PCIe® bus, for Alveo™ Data Center accelerator cards, and
debugged using USB-JTAG cables for both Alveo cards and embedded processor platforms.

Debugging Flows
The Vitis unified software platform provides application-level debug features which allow the
host code, the kernel code, and the interactions between them to be efficiently debugged in
either the Vitis IDE, or from the command line. The recommended debugging flow consists of
three levels of debugging:

• Debugging in Software Emulation to confirm the algorithm functionality of the application as
represented in both your host program and kernel code.

• Debugging in Hardware Emulation to compile the kernel into RTL, confirm the behavior of the
generated logic, and evaluate the simulated performance of the hardware.

• Debugging During Hardware Execution to implement the FPGA binary and debug the
application running in hardware.

This three-tiered approach allows debugging the host and kernel code, and the interactions
between them at different levels of abstraction. Each provides specific insights into the design
and makes debugging easier. All flows are supported through an integrated GUI flow as well as
through a batch flow using basic compile time and runtime setup options.

In the case of applications running on embedded processor platforms, some additional setup is
required as described in Debugging on Embedded Processor Platforms.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 283Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=283

Debugging in Software Emulation
IMPORTANT! The following steps describe debugging from the command line. However, the Vitis IDE
offers a standalone debug environment for use with the Vitis application acceleration projects created from
the command line. Refer to Using the Standalone Debug Flow for more information.

The Vitis unified software platform supports typical software debugging for the host code at all
times, the kernel code when running in software emulation mode, and at points during hardware
emulation mode. This is a standard software debug flow using breakpoints, stepping through
code, analyzing variables, and forcing the code into specific states.

The following figure shows the debug flow during software emulation for the host and kernel
code (written in C/C++ or OpenCL™) using the GNU debugging (GDB) tool. Notice the two
instances of GDB to separately debug the host and kernel processes, and the use of the debug
server (xrt_server).

Figure 81: Software Emulation

X22014-091219

Debug Server

GDB GDB

Kernel Code
 C++/OpenCL

Runtime

Standard System
Libraries

Host Code C++/
OpenCL

Xilinx recommends iterating the design as much as possible in Software Emulation, which takes
little compile time and executes quickly. For more detailed information on software emulation,
see Software Emulation.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 284Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=284

GDB-Based Debugging
IMPORTANT! Both the host and kernel code must be compiled for debugging using the -g  option.

For the GNU debugging (GDB), you can debug the kernel or host code, adding breakpoints, and
inspecting variables. This familiar software debug flow allows quick design, compile, and debug to
validate the functionality of your application. The Vitis debugger also provides extensions to
GDB to let you examine the content of the Xilinx Runtime (XRT) library from the host program.
These extensions can be used to debug protocol synchronization issues between the host and
the kernel.

The Vitis core development kit supports GDB host program debugging in all flows, but kernel
debugging is limited to software and hardware emulation modes. Debugging features need to be
enabled in your host and kernel code by using the -g option during compilation and linking.

This section shows how host and kernel debugging can be performed with the help of GDB.
Because this flow should be familiar to most software developers, this section focuses on the
extensions of host code debugging capabilities for the XRT library and the requirements of kernel
debug.

Xilinx Runtime Library GDB Extensions

The Vitis debugger (xgdb) enables new GDB commands that give you visibility from the host
application into the XRT library.

Note: If you launch GDB outside of the Vitis debugger, the command extensions need to be enabled using
the appdebug.py script as described in Launching Host and Kernel Debug.

There are two kinds of commands which can be called from the gdb command line:

1. xprint commands that give visibility into XRT library data structures (cl_command_queue,
cl_event, and cl_mem). These commands are explained below.

2. xstatus commands that give visibility into IP running on the Vitis target platform when
debugging during hardware execution.

You can get more information about the xprint and xstatus commands by using the help
<command> from the gdb command prompt.

A typical application for these commands is when you see the host application hang. In this case,
the host application could be waiting for the command queue to finish, or waiting on an event
list. Printing the command queue using the xprint queue command can tell you what events
are unfinished, allowing you to analyze dependencies between events.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 285Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=285

The output of both of these commands is automatically tracked when debugging with the Vitis
IDE. In this case, three tabs are provided next to the common tabs for Variables, Breakpoints, and
Registers in the upper left corner of the debug perspective. These are labeled Command Queue,
Memory Buffers, and Platform Debug, showing the output of xprint queue, xprint mem,
and xstatus, respectively.

xprint Commands

The arguments to xprint queue and xprint mem are optional. The application debug
environment keeps track of all the XRT library objects and automatically prints all valid queues
and cl_mem objects if the argument is not specified. In addition, the commands do a proper
validation of supplied command queue, event, and cl_mem arguments.

xprint queue [<cl_command_queue>]
xprint event <cl_event>
xprint mem [<cl_mem>]
xprint kernel
xprint all

xstatus Commands

This functionality is only available in the system flow (hardware execution) and not in any of the
emulation flows.

xstatus all
xstatus --<ipname>

GDB Kernel-Based Debugging

GDB kernel debugging is supported for the software emulation and hardware emulation flows.
When the GDB executable is connected to the kernel in the IDE or command line flows, you can
set breakpoints and query the content of variables in the kernel, similar to normal host code
debugging. This is fully supported in the software emulation flow because the kernel GDB
processes attach to the spawned software processes.

However, during hardware emulation, the kernel source code is transformed into RTL, created by
Vitis HLS, and executed. As the RTL model is simulated, all transformations for performance
optimization and concurrent hardware execution are applied. For that reason, not all C/C++/
OpenCL lines can be uniquely mapped to the RTL code, and only limited breakpoints are
supported and at only specific variables can be queried. Today, the GDB tool therefore breaks on
the next possible line based on requested breakpoint statements and clearly states if variables
can not be queried based on the RTL transformations.

Command Line Debug Flow
TIP: Set up the command shell or window as described in Setting up the Vitis Environment prior to running
the tools.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 286Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=286

The following describes the steps required to run the debug flow in software emulation from the
command line. Refer to Section VII: Using the Vitis IDE for information on debugging in the IDE.
Debugging in the Vitis core development kit uses the following steps:

1. Compiling and linking the host code for debugging by adding the -g option to the g++
command line as described in Building the Host Program.

2. Compiling and linking the kernel code for debugging by adding the -g option to the v++
command line as described in Building the Device Binary.

Note: When debugging OpenCL kernels, there are additional steps that you can take during compiling
and linking as described in Debugging OpenCL Kernels.

3. Launching GDB to debug the application. This process involves three command target
platforms as described in Launching Host and Kernel Debug.

Debugging OpenCL Kernels

For OpenCL kernels, additional runtime checks can be performed during software emulation.
These additional checks include:

• Checking whether an OpenCL kernel makes out-of-bounds accesses to the interface buffers
(fsanitize=address).

• Checking whether the kernel makes accesses to uninitialized local memory
(fsanitize=memory).

These are Vitis compiler options that are enabled through the --advanced compiler option as
described in --advanced Options, using the following command syntax:

--advanced.param compiler.fsanitize=address,memory

When applied, the emulation run produces a debug log with emulation diagnostic messages that
are written to <project_dir>/Emulation-SW/<proj_name>-Default>/
emulation_debug.log.

The fsanitize directive can also be specified in a config file, as follows:

[advanced]
#param=<param_type>:<param_name>.<value>
param=compiler.fsanitize=address,memory

Then the config file is specified on the v++ command line:

v++ -l –t sw_emu --config ./advanced.txt -o bin_kernel.xclbin

Refer to the Vitis Compiler Configuration File for more information on the --config option.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 287Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=287

Launching Host and Kernel Debug

In software emulation, to better model the hardware accelerator, the execution of the FPGA
binary is spawned as a separate process. If you are using GDB to debug the host code,
breakpoints set in kernel code are not encountered because the kernel code is not run within the
host code process. To support the concurrent debugging of the host and kernel code, the Vitis
debugger provides a system to attach to spawned kernels through the use of the debug server
(xrt_server). To connect the host and kernel code to the debug server, you must open three
terminal windows using the following process.

TIP: This flow should also work while using a graphical front-end for GDB, such as the data display
debugger (DDD) available from GNU. The following steps are the instructions for launching GDB.

1. Open three terminal windows, and set up each window as described in Setting up the Vitis
Environment. The three windows are for:

• Running xrt_server

• Running GDB (xgdb) on the Host Code

• Running GDB (xgdb) on the Kernel Code

2. In the first terminal, after setting up the terminal environment, start the Vitis debug server
using the following command:

xrt_server --sdx-url

The debug server listens for debug commands from the host and kernel, connecting the two
processes to create a single debug environment. The xrt_server returns a listener
port <num> on standard out. Keep track of the listener port number returned as this port is
used by GDB to debug the kernel process. To control this process, you must start new GDB
instances and connect to the xrt_server. You will do this in the next steps.

IMPORTANT! With the xrt_server  running, all spawned GDB processes wait for control from
you. If no GDB ever attaches to the xrt_server, or provides commands, the kernel code appears to
hang.

3. In a second terminal, after setting up the terminal environment, launch GDB for the host code
as described in the following steps:

a. Set the ENABLE_KERNEL_DEBUG environment variable. For example, in a C-shell use the
following:

setenv ENABLE_KERNEL_DEBUG true

b. Set the XCL_EMULATION_MODE environment variable to sw_emu mode as described in
Running an Application. For example, in a C-shell use the following:

setenv XCL_EMULATION_MODE sw_emu

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 288Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=288

c. The runtime debug feature must be enabled using an entry in the xrt.ini file, as
described in xrt.ini File. Create an xrt.ini file in the same directory as your host
executable, and include the following lines:

[Debug]
app_debug=true

This informs the runtime library that the kernel has been compiled for debug, and that
XRT library should enable debug features.

d. Start gdb through the Xilinx wrapper:

xgdb --args <host> <xclbin>

Where <host> is the name of your host executable, and <xclbin> is the name of the
FPGA binary. For example:

xgdb --args host.exe vadd.xclbin

Launching GDB from the xgdb wrapper performs the following setup steps for the Vitis
debugger:

• Loads GDB with the specified host program.

• Sources the Python script from the GDB command prompt to enable the Vitis
debugger extensions:

gdb> source ${XILINX_XRT}/share/appdebug/appdebug.py

4. In a third terminal, after setting up the terminal environment, launch the xgdb command, and
run the following commands from the (gdb) prompt:

• For software emulation:

file <Vitis_path>/data/emulation/unified/cpu_em/generic_pcie/model/
genericpciemodel

Where <Vitis_path> is the installation path of the Vitis core development kit. Using
the $XILINX_VITIS environment variable will not work inside GDB.

• For hardware emulation:

1. Locate the xrt_server temporary directory:/tmp/sdx/$uid.

2. Find the xrt_server process id (PID) containing the DWARF file of this debug
session.

3. At the gdb command line, run: file /tmp/sdx/$uid/$pid/NUM.DWARF.

• In either case, connect to the kernel process:

target remote :<num>

Where <num> is the listener port number returned by the xrt_server.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 289Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=289

TIP: When debugging software/hardware emulation kernels in the Vitis IDE, these steps are handled
automatically and the kernel process is automatically attached, providing multiple contexts to debug
both the host code and kernel code simultaneously.

With the three terminal windows running the xrt_server, GDB for the host, and GDB for the
kernels, you can set breakpoints on your host or kernels as needed, run the continue
command, and debug your application. When the all kernel invocations have finished, the host
code continues and the xrt_server connection drops.

IMPORTANT! For both software and hardware emulation flows, there are restrictions with respect to the
accelerated kernel code debug interactions. Because this code is preprocessed in the software emulation
flow, and translated to RTL in the hardware emulation flow, it is not always possible to set breakpoints at
all locations. Only a limited number of breakpoints such as preserved loops and functions are supported,
especially for hardware emulation. Nevertheless, this setup is useful for debugging the interface of the host
code with the kernels.

Using printf() or cout to Debug Kernels
The basic approach to debugging algorithms is to verify key code steps and key data values
throughout the execution of the program. For application developers, printing checkpoint
statements, and outputting current values in the code is a simple and effective method of
identifying issues within the execution of a program. This can be done using the printf()
function, or cout for standard output.

C/C++ Kernel

For C/C++ kernel models, printf() is only supported during software emulation and should be
excluded from the Vitis HLS synthesis step. In this case, any printf() statement should be
surrounded by the following compiler macros:

#ifndef __SYNTHESIS__
 printf("Checkpoint 1 reached");
#endif

For C++ kernels, you can also use cout in your code to add checkpoints or messages used for
debugging the code. For example, you might add the following:

std::cout << "TEST " << (match ? "PASSED" : "FAILED") << std::endl;

OpenCL Kernel

The Xilinx Runtime (XRT) library supports the OpenCL™ printf() built-in function within
kernels in all build configurations: software emulation, hardware emulation, and during hardware
execution.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 290Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=290

TIP: The printf()  function is only supported in all build configurations for OpenCL kernels. For C/C++
kernels, printf()  is only supported in software emulation.

The following is an example of using printf() in the kernel, and the output when the kernel is
executed with global size of 8:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void hello_world(__global int *a)
{
 int idx = get_global_id(0);

 printf("Hello world from work item %d\n", idx);
 a[idx] = idx;
}

The output is as follows:

Hello world from work item 0
Hello world from work item 1
Hello world from work item 2
Hello world from work item 3
Hello world from work item 4
Hello world from work item 5
Hello world from work item 6
Hello world from work item 7

IMPORTANT! printf()  messages are buffered in the global memory and unloaded when kernel
execution is completed. If printf()  is used in multiple kernels, the order of the messages from each
kernel display on the host terminal is not certain. Note, especially when running in hardware emulation and
hardware, the hardware buffer size might limit printf output capturing.

Debugging in Hardware Emulation
IMPORTANT! The following steps describe debugging from the command line. However, the Vitis IDE
offers a standalone debug environment for use with the Vitis application acceleration projects created from
the command line. Refer to Using the Standalone Debug Flow for more information.

During hardware emulation, kernel code is compiled into RTL code so that you can evaluate the
RTL logic of kernels prior to implementation into the Xilinx device. The host code can be
executed concurrently with a behavioral simulation of the RTL model of the kernel, directly
imported, or created through Vitis HLS from the C/C++/OpenCL kernel code. For more
information, see Hardware Emulation.

The following figure shows the hardware emulation flow diagram which can be used in the Vitis
debugger to validate the host code, profile host and kernel performance, give estimated FPGA
resource usage, and verify the kernel using an accurate model of the hardware (RTL). GDB can
also be used for more traditional software-style debugging of the host and kernel code.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 291Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=291

Figure 82: Hardware Emulation

GDB

Host Code
C++/OpenCL

Standard System
Libraries

Runtime

Kernel Code
RTL

Xsim
+

TLM Interface Models

Debug Server

GDB

Kernel Code
C++/OpenCL

Vitis
 H

LS

X21159-052420

Verify the host code and the kernel hardware implementation is correct by running hardware
emulation on a data set. The hardware emulation flow invokes the Vivado logic simulator in the
Vitis core development kit to test the kernel logic that is to be executed on the FPGA fabric. The
interface between the models is represented by a transaction-level model (TLM) to limit impact
of interface model on the overall execution time. The execution time for hardware emulation is
longer than software emulation.

TIP: Xilinx recommends that you use small data sets for debug and validation.

During hardware emulation, you can optionally modify the kernel code to improve performance.
Iterate your host and kernel code design in hardware emulation until the functionality is correct,
and the estimated kernel performance is satisfactory.

GDB-Based Debugging in Hardware Emulation
Debugging using a software-based GDB flow is fully supported during hardware emulation.
Because the Vitis debugger maps the RTL code back to the original C/C++ source code, there is
no difference in using GDB for debugging in hardware emulation. However, mapping the code
limits the breakpoints and observability of the variables in some cases, because during the RTL
generation by Vitis HLS, some variables and loops from the kernel source might have been
dissolved, or optimized away.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 292Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=292

Using GDB for debugging the host and kernel code in hardware emulation uses the same three-
terminal process described for software emulation. Refer to the instructions in Command Line
Debug Flow for details of running this flow.

Waveform-Based Kernel Debugging
Because the C/C++ and OpenCL kernel code is synthesized into RTL code using Vitis HLS in the
hardware emulation build configuration, you can also use RTL behavioral simulation to analyze
the kernel logic. Hardware designers are likely to be familiar with this approach. This waveform-
based HDL debugging is supported by the Vitis core development kit using both the command
line flow, or through the IDE flow during hardware emulation.

TIP: Waveform-based debugging is considered an advanced feature. In most cases, the RTL Logic does not
need to be analyzed.

Enable Waveform Debugging with the Vitis Compiler Command

The waveform debugging process can be enabled through the v++ command using the following
steps:

1. Enable debug features in the kernel code during compilation and linking, as described in
Building the Device Binary.

v++ -g ...

2. Create an xrt.ini file in the same directory as the host executable, as described in xrt.ini
File, with the following contents:

[Emulation]
debug_mode=batch

[Debug]
profile=true
timeline_trace=true
data_transfer_trace=fine

3. Run the application, host and kernel, in hardware emulation mode. The waveform database,
reflecting the hardware transaction data, is collected in a file named
<hardware_platform>-<device_id>-<xclbin_name>.wdb. This file can directly be
opened in the Vitis analyzer as described in Section VI: Using the Vitis Analyzer.

TIP: If debug_mode=gui  in the xrt.ini , a live waveform viewer is launched when the
application is run, as described in Waveform View and Live Waveform Viewer. This is especially useful
when debugging a hw_emu  hang issue, because you can interrupt the simulation process in the
simulator and observe the waveform up to that time.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 293Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=293

Run the Waveform-Based Kernel Debugging Flow

The Vitis IDE provides waveform-based HDL debugging in the hardware emulation mode. The
waveform is opened in the Vivado waveform viewer which should be familiar to Vivado logic
simulation users. The Vitis IDE lets you display kernel interfaces, internal signals, and includes
debug controls such as restart, HDL breakpoints, as well as HDL code lookup and waveform
markers. In addition, it provides top-level DDR data transfers (per bank) along with kernel-
specific details including compute unit stalls, loop pipeline activity, and data transfers.

For details, see Waveform View and Live Waveform Viewer.

If the live waveform viewer is activated, the waveform viewer automatically opens when running
the executable. By default, the waveform viewer shows all interface signals and the following
debug hierarchy:

Figure 83: Waveform Viewer

• Memory Data Transfers: Shows data transfers from all compute units funnel through these
interfaces.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 294Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=294

TIP: These interfaces could be a different bit width from the compute units. If so, then the burst lengths
would be different. For example, a burst of sixteen 32-bit words at a compute unit would be a burst of
one 512-bit word at the OCL master.

• Kernel <kernel name><workgroup size> Compute Unit<CU name>: Kernel name, workgroup
size, and compute unit name.

• CU Stalls (%): This shows a summary of stalls for the entire CU. A bus of all lowest-level stall
signals is created, and the bus is represented in the waveform as a percentage (%) of those
signals that are active at any point in time.

• Data Transfers: This shows the data transfers for all AXI masters on the CU.

• User Functions: This lists all of the functions within the hierarchy of the CU.

• Function: <function name>: This is the function name.

• Dataflow/Pipeline Activity: This shows the function-level loop dataflow/pipeline signals for a
CU.

• Function Stalls: This lists the three stall signals within this function.

• Function I/O: This lists the I/O for the function. These I/O are of protocol -m_axi, ap_fifo,
ap_memory, or ap_none.

TIP: As with any waveform debugger, additional debug data of internal signals can be added by selecting
the instance of interest from the scope menu and the signals of interest from the object menu. Similarly,
debug controls such as HDL breakpoints, as well as HDL code lookup and waveform markers are
supported. Refer to the Vivado Design Suite User Guide: Logic Simulation (UG900) for more information on
working with the waveform viewer.

Debugging During Hardware Execution
IMPORTANT! The following steps describe debugging from the command line. However, the Vitis IDE
offers a standalone debug environment for use with the Vitis application acceleration projects created from
the command line. Refer to Using the Standalone Debug Flow for more information.

During hardware execution, the actual hardware platform is used to execute the kernels, and you
can evaluate the performance of the host program and accelerated kernels just by running the
application. However, debugging the hardware build requires additional logic to be incorporated
into the application. This will impact both the FPGA resources consumed by the kernel and the
performance of the kernel running in hardware. The debug configuration of the hardware build
includes special ChipScope debug cores, such as Integrated Logic Analyzer (ILA) and Virtual
Input/Output (VIO) cores, and AXI performance monitors for debug purposes.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 295Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=295

TIP: The additional logic required for debugging the hardware should be removed from the final production
build.

The following figure shows the debug process for the hardware build, including debugging the
host code using GDB, and using the Vivado hardware manager, with waveform analysis, kernel
activity reports, and memory access analysis to identify and localize hardware issues.

Figure 84: Hardware Execution

GDB

Host Code
C++/OpenCL

Standard System
Libraries

Runtime

FPGA Board
+

FPGA
Containing Debug

XCLBIN

XBUTIL

Vivado Hardware
Manager

Debug
XCLBIN

Hardware Debug Model

PCIe AXI

Debug
Enabled
Target

Platform

RTL
Kernel

OpenCL
Kernel

C/C++
Kernel

Vitis Debug Build

X21160-092519

With the system hardware build configured for debugging, the host program running on the CPU
and the Vitis accelerated kernels running on the Xilinx device can be confirmed to be executing
correctly on the actual hardware of the target platform. Some of the conditions that can be
identified and analyzed include the following:

• System hangs caused by protocol violations:

○ These violations can take down the entire system.

○ These violations can cause the kernel to get invalid data or to hang.

○ It is hard to determine where or when these violations originated.

○ To debug this condition, you should use an ILA triggered off of the AXI protocol checker,
which needs to be configured on the Vitis target platform.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 296Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=296

• Problems with the hardware kernel:

○ Problems sometimes caused by the implementation: timing issues, race conditions, and bad
design constraints.

○ Functional bugs that hardware emulation does not reveal.

• Performance issues:

○ For example, the frames per second processing is not what you expect.

○ You can examine data beats and pipelining.

○ Using an ILA with trigger sequencer, you can examine the burst size, pipelining, and data
width to locate the bottleneck.

Enabling Kernels for Debugging with Chipscope
The key to hardware debugging lies in instrumenting the kernels with the required debug logic.
The following topic discusses the v++ linker options that can be used to list the available kernel
ports, enable the System Integrated Logic Analyzer (ILA) core on selected ports, and enable the
AXI Protocol Checker debug core for checking for protocol violations.

The ILA core provides transaction-level visibility into an instance of a compute unit (CU) running
on hardware. AXI traffic of interest can also be captured and viewed using the ILA core. The ILA
core can be added to an existing RTL kernel to enable debugging features within that design, or it
can be inserted automatically by the v++ compiler during the linking stage. The v++ command
provides the --dk option to attach System ILA cores at the interfaces to the kernels for
debugging and performance monitoring purposes.

The -–dk option to enable ILA IP core insertion has the following syntax:

 --dk <chipscope:<cu_name>[:<interface_name>]>

In general, the <interface_name> is optional. If not specified, all ports are expected to be
analyzed.

The AXI Protocol Checker core monitors AXI interfaces. When attached to an interface, it
actively checks for protocol violations and provides an indication of which violation occurred.
You can assign it for all CUs in the design, or for specific CUs and ports.

The -–dk option to enable AXI Protocol Checker insertion has the following syntax:

 --dk <protocol:all>

The protocol checker can be specified with the keyword all, or the
<cu_name>:<interface_name>.

Note: The --dk list_ports option can be specified to return the actual names of ports on the kernel to
use with protocol or chipscope.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 297Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=297

An example flow you could use for adding ILA or protocol checkers to your design is outlined
below:

1. First, you must compile the kernel source files into an .xo file, using the -g option to
instrument the kernel for debug features:

v++ -c -g -k <kernel_name> --platform <platform> -o <kernel_xo_file>.xo
<kernel_source_files>

2. After the kernel has been compiled into an .xo file, you can use --dk list_ports to
cause the v++ compiler to print the list of valid compute units and port combinations for the
kernel:

v++ -l -g --platform <platform> --connectivity.nk
<kernel_name>:<compute_units>:<kernel_nameN>
--dk list_ports <kernel_xo_file>.xo

3. Finally, add the ILA or AXI debug cores on the desired ports by replacing list_ports with
the appropriate --dk chipscope or --dk protocol command syntax:

v++ -l -g --platform <platform> --connectivity.nk
<kernel_name>:<compute_units>:<kernel_nameN>
--dk chipscope:<compute_unit_name>:<interface_name> <kernel_xo_file>.xo

TIP: The --dk  option can be specified multiple times in a single v++  command line to specify multiple
CUs and interfaces.

When the design is built, you can debug the design using the Vivado hardware manager as
described in Debugging with ChipScope.

System ILA

The Vitis core development kit provides insertion of the Integrated Logic Analyzer (ILA) into a
design to capture and view AXI transaction level activity by probing the signals between kernel
interfaces and global memory. The ILA provides custom event triggering on one or more signals
to allow waveform capture at system speeds. The waveforms can be analyzed in a viewer and
used to debug hardware, finding protocol violations or performance issues for example, and can
be crucial for debugging difficult situation like application hangs.

Captured data can be accessed through the Xilinx virtual cable (XVC) using the Vivado tools. See
the Vivado Design Suite User Guide: Programming and Debugging (UG908) for complete details.

Note: ILA debug cores require system resources, including logic and local memory to capture and store the
signal data. Therefore they provide excellent visibility into your kernel, but they can affect both
performance and resource utilization.

System ILAs can be inserted into the design using the v++ --dk option as shown below:

$ v++ --dk chipscope:<compute_unit_name>:<interface_name>

Refer to the Vitis Compiler Command for more information.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 298Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=298

Adding Debug IP to RTL Kernels

IMPORTANT! This debug technique requires familiarity with the Vivado Design Suite, and RTL design.

You can also enable debugging in RTL kernels by manually adding ChipScope debug cores like the
ILA and VIO in your RTL kernel code. From within the Vivado Design Suite, edit the RTL kernel
code to manually instantiate an ILA debug core, or VIO IP from the Xilinx IP catalog, similar to
using any other IP in Vivado IDE. Refer to the HDL Instantiation flow in the Vivado Design Suite
User Guide: Programming and Debugging (UG908) to learn more about adding debug cores to your
design.

The best time to add debug cores to your RTL kernel is when you create it. Refer to the
Debugging section in the UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)
for more information. The following is an example of an ILA debug core instantiated into the RTL
kernel source file of the RTL Kernel Debug example design on GitHub. The ILA monitors the
output of the combinatorial adder as specified in the src/hdl/krnl_vadd_rtl_int.sv file.

 // ILA monitoring combinatorial adder
 ila_0 i_ila_0 (
 .clk(ap_clk), // input wire clk
 .probe0(areset), // input wire [0:0] probe0
 .probe1(rd_fifo_tvalid_n), // input wire [0:0] probe1
 .probe2(rd_fifo_tready), // input wire [0:0] probe2
 .probe3(rd_fifo_tdata), // input wire [63:0] probe3
 .probe4(adder_tvalid), // input wire [0:0] probe4
 .probe5(adder_tready_n), // input wire [0:0] probe5
 .probe6(adder_tdata) // input wire [31:0] probe6
);

However, you can also add the ILA debug core using a Tcl script from within an open Vivado
project, using the Netlist Insertion flow described in Vivado Design Suite User Guide: Programming
and Debugging (UG908), as shown in the following Tcl script example:

create_ip -name ila -vendor xilinx.com -library ip -version 6.2 -
module_name ila_0
set_property -dict [list CONFIG.C_PROBE6_WIDTH {32} CONFIG.C_PROBE3_WIDTH
{64} \
CONFIG.C_NUM_OF_PROBES {7} CONFIG.C_EN_STRG_QUAL {1}
CONFIG.C_INPUT_PIPE_STAGES {2} \
CONFIG.C_ADV_TRIGGER {true} CONFIG.ALL_PROBE_SAME_MU_CNT {4}
CONFIG.C_PROBE6_MU_CNT {4} \
CONFIG.C_PROBE5_MU_CNT {4} CONFIG.C_PROBE4_MU_CNT {4}
CONFIG.C_PROBE3_MU_CNT {4} \
CONFIG.C_PROBE2_MU_CNT {4} CONFIG.C_PROBE1_MU_CNT {4}
CONFIG.C_PROBE0_MU_CNT {4}] [get_ips ila_0]

After the RTL kernel has been instrumented for debug with the appropriate debug cores, you can
analyze the hardware in the Vivado hardware manager as described in Debugging with
ChipScope.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 299Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug949-vivado-design-methodology.pdf
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/rtl_kernel/rtl_vadd_hw_debug
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=299

Enabling ILA Triggers for Hardware Debug
To perform hardware debug of both the host program and the kernel code running on the target
platform, the application host code must be modified to let you set up the ILA trigger conditions
after the kernel has been programmed into the device, but before starting the kernel.

Adding ILA Triggers Before Starting Kernels

Pausing the host program can be accomplished through the use of a pause, or wait step in the
code, such as the wait_for_enter function used in the RTL Kernel example on GitHub. The
function is defined in the src/host.cpp code as follows:

void wait_for_enter(const std::string &msg) {
 std::cout << msg << std::endl;
 std::cin.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
}

The wait_for_enter function is used in the main function as follows:

....
 std::string binaryFile = xcl::find_binary_file(device_name,"vadd");

 cl::Program::Binaries bins = xcl::import_binary_file(binaryFile);
 devices.resize(1);
 cl::Program program(context, devices, bins);
 cl::Kernel krnl_vadd(program,"krnl_vadd_rtl");

 wait_for_enter("\nPress ENTER to continue after setting up ILA
trigger...");

 //Allocate Buffer in Global Memory
 std::vector<cl::Memory> inBufVec, outBufVec;
 cl::Buffer buffer_r1(context,CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY,
 vector_size_bytes, source_input1.data());
 ...

 //Copy input data to device global memory
 q.enqueueMigrateMemObjects(inBufVec,0/* 0 means from host*/);

 //Set the Kernel Arguments
 ...

 //Launch the Kernel
 q.enqueueTask(krnl_vadd);

The use of the wait_for_enter function pauses the host program to give you time to set up
the required ILA triggers and prepare to capture data from the kernel. After the Vivado hardware
manager is set up and configured, press Enter to continue running the application.

• For C++ host code, add a pause after the creation of the cl::Kernel object, as shown in the
example above.

• For C-language host code, add a pause after the clCreateKernel() function call:

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 300Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/rtl_kernel/rtl_vadd_hw_debug
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=300

Pausing the Host Application Using GDB

If you are running GDB to debug the host program at the same time as performing hardware
debug on the kernels, you can also pause the host program as needed by inserting a breakpoint
at the appropriate line of code. Instead of making changes to the host program to pause the
application as needed, you can set a breakpoint prior to the kernel execution in the host code.
When the breakpoint is reached, you can set up the debug ILA triggers in Vivado hardware
manager, arm the trigger, and then resume the host program in GDB.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 301Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=301

Debugging with ChipScope
You can use the ChipScope debugging environment and the Vivado hardware manager to help
you debug your host application and kernels quickly and more effectively. These tools enable a
wide range of capabilities from logic to system-level debug while your kernel is running in
hardware. To achieve this, at least one of the following must be true:

• Your Vitis application project has been designed with debug cores, using the --dk compiler
switch, as described in Enabling Kernels for Debugging with Chipscope.

• The RTL kernels used in your project must have been instantiated with debug cores (as
described in Adding Debug IP to RTL Kernels).

Checking the FPGA Board for Hardware Debug Support

Supporting hardware debugging requires the platform to support several IP components, most
notably the Debug Bridge. Talk to your platform designer to determine if these components are
included in the target platform. If a Xilinx platform is used, debug availability can be verified using
the platforminfo utility to query the platform. Debug capabilities are listed under the
chipscope_debug objects.

For example, to query the a platform for hardware debug support, the following platforminfo
command can be used:

$ platforminfo --json="hardwarePlatform.extensions.chipscope_debug"
xilinx_u200_xdma_201830_2
{
 "debug_networks": {
 "user": {
 "name": "User Debug Network",
 "pcie_pf": "1",
 "bar_number": "0",
 "axi_baseaddr": "0x000C0000",
 "supports_jtag_fallback": "false",
 "supports_microblaze_debug": "true",
 "is_user_visible": "true"
 },
 "mgmt": {
 "name": "Management Debug Network",
 "pcie_pf": "0",
 "bar_number": "0",
 "axi_baseaddr": "0x001C0000",
 "supports_jtag_fallback": "true",
 "supports_microblaze_debug": "true",
 "is_user_visible": "false"
 }
 }
}

The response shows that the target platform contains user and mgmt debug networks, supports
debugging a MicroBlaze™ processor, and also supports JTAG fallback for the Management Debug
Network.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 302Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=302

Running XVC and HW Servers

The following steps are required to run the Xilinx virtual cable (XVC) and HW servers, host
applications, and also trigger and arm the debug cores in the Vivado hardware manager.

1. Add debug IP to the kernel as discussed in Enabling Kernels for Debugging with Chipscope.

2. Modify the host program to pause at the appropriate point as described in Enabling ILA
Triggers for Hardware Debug.

3. Set up the environment for hardware debug, using an automated script described in
Automated Setup for Hardware Debug, or manually as described in Manual Setup for
Hardware Debug.

4. Run the hardware debug flow using the following process:

a. Launch the required XVC and the hw_server of the Vivado hardware manager.

b. Run the host program and pause at the appropriate point to enable setup of the ILA
triggers.

c. Open the Vivado hardware manager and connect to the XVC server.

d. Set up ILA trigger conditions for the design.

e. Continue execution of the host program.

f. Inspect kernel activity in the Vivado hardware manager.

g. Rerun iteratively from step b (above) as required.

Automated Setup for Hardware Debug

1. Set up your Vitis core development kit as described in Setting up the Vitis Environment.

2. Use the debug_hw script to launch the xvc_pcie and hw_server apps as follows:

debug_hw --xvc_pcie /dev/xvc_pub.<driver_id> --hw_server

The debug_hw script returns the following:

launching xvc_pcie...
xvc_pcie -d /dev/xvc_pub.<driver_id> -s TCP::10200
launching hw_server...
hw_server -sTCP::3121

TIP: The /dev/xvc_pub.<driver_id>  driver character path is defined on your machine, and
can be found by examining the /dev folder.

3. Modify the host code to include a pause statement after the kernel has been created/
downloaded and before the kernel execution is started, as described in Enabling ILA Triggers
for Hardware Debug.

4. Run your modified host program.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 303Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=303

5. Launch Vivado Design Suite using the debug_hw script:

debug_hw --vivado --host <host_name> --ltx_file ./_x/link/vivado/vpl/prj/
prj.runs/impl_1/debug_nets.ltx

TIP: The <host_name>  is the name of your system.

As an example, the command window displays the following results:

launching vivado... ['vivado', '-source', 'vitis_hw_debug.tcl', '-
tclargs',
'/tmp/project_1/project_1.xpr', 'workspace/vadd_test/System/
pfm_top_wrapper.ltx',
'host_name', '10200', '3121']

****** Vivado v2019.2 (64-bit)
 **** SW Build 2245749 on Date Time
 **** IP Build 2245576 on Date Time
 ** Copyright 1986-2019 Xilinx, Inc. All Rights Reserved.

start_gui

6. In Vivado Design Suite, run the ILA trigger.

7. Press Enter to continue running the host program.

8. In the Vivado hardware manager, see the interface transactions on the kernel compute unit
slave control interface in the Waveform view.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 304Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=304

Manual Setup for Hardware Debug

TIP: The following steps can be used when setting up Nimbix and other cloud platforms.

There are a few steps required to start the debug servers prior to debugging the design in the
Vivado hardware manager.

1. Set up your Vitis core development kit as described in Setting up the Vitis Environment.

2. Launch the xvc_pcie server. The file name passed to xvc_pcie must match the character
driver file installed with the kernel device driver, where <driver_id> can be found by
examining the /dev folder.

>xvc_pcie -d /dev/xvc_pub.<device_id>

TIP: The xvc_pcie  server has many useful command line options. You can issue xvc_pcie -
help  to obtain the full list of available options.

3. Start the hw_server on port 3121, and connect to the XVC server on port 10201 using the
following command:

>hw_server -e "set auto-open-servers xilinx-xvc:localhost:10201" -e "set
always-open-jtag 1"

4. Launch Vivado Design Suite and open the hardware manager:

vivado

Starting Debug Servers on an Amazon F1 Instance

Instructions to start the debug servers on an Amazon F1 instance can be found here: https://
github.com/aws/aws-fpga/blob/master/hdk/docs/Virtual_JTAG_XVC.md

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 305Send Feedback

https://github.com/aws/aws-fpga/blob/master/hdk/docs/Virtual_JTAG_XVC.md
https://github.com/aws/aws-fpga/blob/master/hdk/docs/Virtual_JTAG_XVC.md
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=305

Debugging Designs Using Vivado Hardware Manager

Traditionally, a physical JTAG connection is used to perform hardware debug for Xilinx devices
with the Vivado hardware manager. The Vitis unified software platforms also makes use of the
Xilinx virtual cable (XVC) for hardware debugging on remote accelerator cards. To take advantage
of this capability, the Vitis debugger uses the XVC server, an implementation of the XVC protocol
that allows the Vivado hardware manager to connect to a local or remote target device for
debug, using the standard Xilinx debug cores like the ILA or the VIO IP.

The Vivado hardware manager, from the Vivado Design Suite or Vivado debug feature, can be
running on the target instance or it can be running remotely on a different host. The TCP port on
which the XVC server is listening must be accessible to the host running Vivado hardware
manager. To connect the Vivado hardware manager to XVC server on the target, the following
steps should be followed on the machine hosting the Vivado tools:

1. Launch the Vivado debug feature, or the full Vivado Design Suite.

2. Select Open Hardware Manager from the Tasks menu, as shown in the following figure.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 306Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=306

3. Connect to the Vivado tools hw_server, specifying a local or remote connection, and the
Host name and Port, as shown below.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 307Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=307

4. Connect to the target instance Virtual JTAG XVC server.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 308Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=308

5. Select the debug_bridge instance from the Hardware window in the Vivado hardware
manager.

Specify the probes file (.ltx) for your design adding it to the Probes → File entry in the
Hardware Device Properties window. Adding the probes file refreshes the hardware device,
and Hardware window should now show the debug cores in your design.

TIP: If the kernel has debug cores as specified in Enabling Kernels for Debugging with Chipscope, the
probes file (.ltx ) is written out during the implementation of the kernel by the Vivado tool.

6. The Vivado hardware manager can now be used to debug the kernels running on the Vitis
software platform. Arm the ILA cores in your kernels and run your host application.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 309Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=309

TIP: Refer to the Vivado Design Suite User Guide: Programming and Debugging (UG908) for more
information on working with the Vivado hardware manager to debug the design.

JTAG Fallback for Private Debug Network

Hardware debug for the Alveo Data Center accelerator cards typically uses the XVC-over-PCIe
connection due to the inaccessibility of the physical card, and the JTAG connector on the card.
While XVC-over-PCIe allows you to remotely debug your application running on the target
platform, certain conditions such as AXI interconnect system hangs can prevent you from
accessing the hardware debug functionality that depends on these PCIe/AXI features. Being able
to debug these kinds of conditions is especially important for platform designers.

The JTAG Fallback feature is designed to provide access to debug networks that were previously
only accessible through XVC-over-PCIe. The JTAG Fallback feature can be enabled without
having to change the XVC-over-PCIe-based debug network in the platform design.

On the host side, when the Vivado hardware manager user connects through the hw_server to
a JTAG cable that is connected to the physical JTAG pins of the accelerator card, or device under
test (DUT), the hw_server disables the XVC-over-PCIe pathway to the hardware. This lets you
use the XVC-over-PCIe cable as your primary debug path, but enable debug over the JTAG cable
directly when it is required in certain situations. When you disconnect from the JTAG cable, the
hw_server re-enables the XVC-over-PCIe pathway to the hardware.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 310Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=310

JTAG Fallback Steps

Here are the steps required to enable JTAG Fallback:

1. Enable the JTAG Fallback feature of the Debug Bridge (AXI-to-BSCAN mode) master of the
debug network to which you want to provide JTAG access. This step enables a BSCAN slave
interface on this Debug Bridge instance.

2. Instantiate another Debug Bridge (BSCAN Primitive mode) in the static logic partition of the
platform design.

3. Connect the BSCAN master port of the Debug Bridge (BSCAN Primitive mode) from step 2 to
the BSCAN slave interface of the Debug Bridge (AXI-to-BSCAN mode) from step 1.

Utilities for Hardware Debugging
In some cases, the normal Vitis IDE and command line debug features are limited in their ability
to isolate an issue. This is especially true when the software or hardware appears not to make
any progress (hangs). These kinds of system issues are best analyzed with the help of the utilities
mentioned in this section.

Using the Linux dmesg Utility

Well-designed kernels and modules report issues through the kernel ring buffer. This is also true
for Vitis technology modules that allow you to debug the interaction with the accelerator board
on the lowest Linux level.

The dmesg utility is a Linux tool that lets you read the kernel ring buffer. The kernel ring buffer
holds kernel information messages in a circular buffer. A circular buffer of fixed size is used to
limit the resource requirements by overwriting the oldest entry with the next incoming message.

TIP: In most cases, it is sufficient to work with the less verbose xbutil  feature to localize an issue. Refer
to Using the Xilinx xbutil Utility for more information on using this tool for debug.

In the Vitis technology, the xocl module and xclmgmt driver modules write informational
messages to the ring buffer. Thus, for an application hang, crash, or any unexpected behavior
(like being unable to program the bitstream, etc.), the dmesg tool should be used to check the
ring buffer.

The following image shows the layers of the software platform associated with the target
platform.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 311Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=311

Figure 85: Software Platform Layers

PCIe Configuration

HAL

XOCL XCLMGMT

DSAUSER PF MGMT PF

X20237-061218

To review messages from the Linux tool, you should first clear the ring buffer:

sudo dmesg -c

This flushes all messages from the ring buffer and makes it easier to spot messages from the
xocl and xclmgmt. After that, start your application and run dmesg in another terminal.

sudo dmesg

The dmesg utility prints a record shown in the following example:

Figure 86: dmesg Utility Example

In the example shown above, the AXI Firewall 2 has tripped, which is better examined using the
xbutil utility.

Using the Xilinx xbutil Utility

The Xilinx board utility (xbutil) is a powerful standalone command line utility that can be used
to debug lower level hardware/software interaction issues. A full description of this utility can be
found in xbutil Utility.

With respect to debugging, the following xbutil options are of special interest:

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 312Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=312

• query: Provides an overall status of a card including information on the kernels in card
memory.

• program: Downloads a binary (xclbin) to the programmable region of the Xilinx device.

• status: Extracts the status of the Performance Monitors (spm) and the Lightweight AXI
Protocol Checkers (lapc).

Techniques for Debugging Application Hangs
This section discusses debugging issues related to the interaction of the host code and the
accelerated kernels. Problems with these interactions manifest as issues such as machine hangs
or application hangs. Although the GDB debug environment might help with isolating the errors
in some cases (xprint), such as hangs associated with specific kernels, these issues are best
debugged using the dmesg and xbutil commands as shown here.

If the process of hardware debugging does not resolve the problem, it is necessary to perform
hardware debugging using the ChipScope feature.

AXI Firewall Trips

The AXI firewall should prevent host hangs. This is why Xilinx recommends the AXI Protocol
Firewall IP to be included in Vitis target platforms. When the firewall trips, one of the first checks
to perform is confirming if the host code and kernels are set up to use the same memory banks.
The following steps detail how to perform this check.

1. Use xbutil to program the FPGA:

xbutil program -p <xclbin>

TIP: Refer to xbutil Utility for more information on xbutil.

2. Run the xbutil query option to check memory topology:

xbutil query

In the following example, there are no kernels associated with memory banks:

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 313Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=313

3. If the host code expects any DDR banks/PLRAMs to be used, this report should indicate an
issue. In this case, it is necessary to check kernel and host code expectations. If the host code
is using the Xilinx OpenCL extensions, it is necessary to check which DDR banks should be
used by the kernel. These should match the connectivity.sp options specified as
discussed in Mapping Kernel Ports to Global Memory.

Kernel Hangs Due to AXI Violations

It is possible for the kernels to hang due to bad AXI transactions between the kernels and the
memory controller. To debug these issues, it is required to instrument the kernels.

1. The Vitis core development kit provides two options for instrumentation to be applied during
v++ linking (-l). Both of these options add hardware to your implementation, and based on
resource utilization it might be necessary to limit instrumentation.

a. Add Lightweight AXI Protocol Checkers (lapc). These protocol checkers are added using
the -–dk option. The following syntax is used:

--dk [protocol|list_ports]:<compute_unit_name>:<interface_name>

In general, the <interface_name> is optional. If not specified, all ports are expected to
be analyzed. The protocol option is used to define the protocol checkers to be
inserted. This option can accept a special keyword, all, for <compute_unit_name>
and/or <interface_name>. The list_ports option generates a list of valid compute
units and port combinations in the current design.

Note: Multiple --dk option switches can be specified in a single command line to additively add
interface monitoring capability.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 314Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=314

b. Adding Performance Monitors (am, aim, asm) enable the listing of detailed
communication statistics (counters). Although this is most useful for performance
analysis, it provides insight during debugging on pending port activities. The Performance
Monitors are added using the profile_kernel option. The basic syntax for
profile_kernel option is:

--profile_kernel data:<krnl_name>|all:<cu_name>|all:<intrfc_name>|
all:<counters>|all

Three fields are required to determine the precise interface to which the performance
monitor is applied. However, if resource use is not an issue, the keyword all enables you
to apply the monitoring to all existing kernels, compute units, and interfaces with a single
option. Otherwise, you can specify the kernel_name, cu_name, and
interface_name explicitly to limit instrumentation.

The last option, <counters>|all, allows you to restrict the information gathering to
just counters for large designs, while all (default) includes the collection of actual
trace information.

Note: Multiple --profile_kernel option switches can be specified in a single command line to
additively add performance monitoring capability.

--profile_kernel data:kernel1:cu1:m_axi_gmem0
--profile_kernel data:kernel1:cu1:m_axi_gmem1
--profile_kernel data:kernel2:cu2:m_axi_gmem

2. When the application is rebuilt, rerun the host application using the xclbin with the added
AIM IP and LAPC IP.

3. When the application hangs, you can use xbutil status to check for any errors or
anomalies.

4. Check the AIM output:

• Run xbutil status --aim a couple of times to check if any counters are moving. If
they are moving then the kernels are active.

TIP: Testing AIM output is also supported through GDB debugging using the command extension
xstatus spm.

• If the counters are stagnant, the outstanding counts greater than zero might mean some
AXI transactions are hung.

5. Check the LAPC output:

• Run xbutil status --lapc to check if there are any AXI violations.

TIP: Testing LAPC output is also supported through GDB debugging using the command extension
xstatus lapc.

• If there are any AXI violations, it implies that there are issues in the kernel implementation.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 315Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=315

Host Application Hangs When Accessing Memory

Application hangs can also be caused by incomplete DMA transfers initiated from the host code.
This does not necessarily mean that the host code is wrong; it might also be that the kernels have
issued illegal transactions and locked up the AXI.

1. If the platform has an AXI firewall, such as in the Vitis target platforms, it is likely to trip. The
driver issues a SIGBUS error, kills the application, and resets the device. You can check this
by running xbutil query. The following figure shows such an error in the firewall status:

TIP: If the firewall has not tripped, the Linux tool, dmesg, can provide additional insight.

2. When you know that the firewall has tripped, it is important to determine the cause of the
DMA timeout. The issue could be an illegal DMA transfer, or kernel misbehavior. However, a
side effect of the AXI firewall tripping is that the health check functionality in the driver
resets the board after killing the application; any information on the device that might help
with debugging the root cause is lost. To debug this issue, disable the health check thread in
the xclmgmt kernel module to capture the error. This uses common Unix kernel tools in the
following sequence:

a. sudo modinfo xclmgmt: This command lists the current configuration of the module
and indicates if the health_check parameter is ON or OFF. It also returns the path to
the xclmgmt module.

b. sudo rmmod xclmgmt: This removes and disables the xclmgmt kernel module.

c. sudo insmod <path to module>/xclmgmt.ko health_check=0: This re-
installs the xclmgmt kernel module with the health check disabled.

TIP: The path to this module is reported in the output of the call to modinfo.

3. With the health check disabled, rerun the application. You can use the kernel instrumentation
to isolate this issue as previously described.

Typical Errors Leading to Application Hangs

The user errors that typically create application hangs are listed below:

• Read-before-write in 5.0+ target platforms causes a Memory Interface Generator error
correction code (MIG ECC) error. This is typically a user error. For example, this error might
occur when a kernel is expected to write 4 KB of data in DDR, but it produces only 1 KB of
data, and then try to transfer the full 4 KB of data to the host. It can also happen if you supply
a 1 KB buffer to a kernel, but the kernel tries to read 4 KB of data.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 316Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=316

• An ECC read-before-write error also occurs if no data has been written to a memory location
as the last bitstream download which results in MIG initialization, but a read request is made
for that same memory location. ECC errors stall the affected MIG because kernels are usually
not able to handle this error. This can manifest in two different ways:

1. The CU might hang or stall because it cannot handle this error while reading or writing to
or from the affected MIG. The xbutil query shows that the CU is stuck in a BUSY state
and is not making progress.

2. The AXI Firewall might trip if a PCIe® DMA request is made to the affected MIG, because
the DMA engine is unable to complete the request. AXI Firewall trips result in the Linux
kernel driver killing all processes which have opened the device node with the SIGBUS
signal. The xbutil query shows if an AXI Firewall has indeed tripped and includes a
timestamp.

If the above hang does not occur, the host code might not read back the correct data. This
incorrect data is typically 0s and is located in the last part of the data. It is important to review
the host code carefully. One common example is compression, where the size of the
compressed data is not known up front, and an application might try to migrate more data to
the host than was produced by the kernel.

Defensive Programming

The Vitis compiler is capable of creating very efficient implementations. In some cases, however,
implementation issues can occur. One such case is if a write request is emitted before there is
enough data available in the process to complete the write transaction. This can cause deadlock
conditions when multiple concurrent kernels are affected by this issue and the write request of a
kernel depends on the input read being completed.

To avoid these situations, a conservative mode is available on the adapter. In principle, it delays
the write request until it has all of the data necessary to complete the write. This mode is
enabled during compilation by applying the following --advanced.param option to the v++
compiler:

--advanced.param:compiler.axiDeadLockFree=yes

Because enabling this mode can impact performance, you might prefer to use this as a defensive
programming technique where this option is inserted during development and testing and then
removed during optimization. You might also want to add this option when the accelerator hangs
repeatedly.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 317Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=317

Debugging on Embedded Processor Platforms
Debugging on embedded processor platforms, such as the xilinx_zcu104_base_202010_1
platform, requires the use of the QEMU emulation environment to model the Arm processor and
operating system for the device. As described in the next sections, running or debugging the
application requires the additional step of launching the emulator, or connecting to the hardware
platform through a TCF agent.

Emulation Debug for Embedded Processors
From within the Vitis IDE, launching debug for the software and hardware emulation builds
include the following steps:

1. In the Assistant view, right-click on the Emulation-SW or Emulation-HW build and select Set
Active to make the build active.

2. From the Assistant view menu, select the Debug () command, and select the Launch on
Emulator command to launch the debug environment.

This will open the Launch on Emulator dialog box as shown in the following figure. This
prompts you to confirm launching the emulation environment and connecting to it using a
Linux TCF agent. Select Start Emulator and Debug to continue.

This launches the emulation environment (QEMU), and loads the application in preparation
for debugging. The application is paused as it enters the main() function. The Debug
perspective is opened in the Vitis IDE, and you are ready to begin debugging your
application.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 318Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=318

Hardware Debug for Embedded Processors
For hardware builds the setup involves the following steps:

1. Copy the contents of the <project>/Hardware/sd_card/sd_card folder to a physical
SD card. This creates a boot-able medium for your target platform.

2. Insert the SD card into the card reader of your embedded processor platform.

3. Change the boot-mode settings of the platform to SD boot mode, and power up the board.

4. After the device is booted, enter the mount command at the command prompt to get a list of
mount points. As shown in the following figure, the mount command displays mounting
information for the system.

TIP: Be sure to capture the proper path for the cd  command in the next step, and subsequent
commands, based on the results of the mount  command.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 319Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=319

5. Execute the following commands, for example:

cd /run/media/mmcblkop1
source init.sh
cat /etc/xocl.txt

The cat command will display the platform name xilinx_vck190_base_202010_1 to let
you confirm it is the same as your specified platform and that your setup is correct.

6. Run ifconfig to get the IP address of the target card. You will use the IP address to set up
a TCF agent connection in Vitis IDE to connect to the assigned IP address of the embedded
processor platform.

7. Create a target connection to the remote accelerator card. Use the Window → Show view → 
Xilinx → Target connections command to open the Target Connections view.

8. In the Target Connections view, right-click on the Linux TCF Agent and select the New Target
command to open the New Target Connection dialog box.

9. Specify the Target Name, enable the Set as default target check box, and specify the Host IP
address of the accelerator card that you obtained in an earlier step.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 320Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=320

10. Click OK to close the dialog box and continue.

11. In the Assistant view, right-click on the Hardware build and select Set Active to make it the
active build.

12. From the Assistant view menu, select the Debug () command, and select the Debug
Configurations command. This opens the Debug Configurations dialog box to let you
configure debug for the Hardware build on your specific platform.

Set the following fields on the Main tab of the dialog box:

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 321Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=321

• Name: Specify a name for your Hardware debug configuration.

• Linux TCF Agent: Select the new agent you built with the specified IP address for the
accelerator card.

• Configuration: Make sure you have selected the Hardware configuration.

• Enable Profiling: If you want to capture trace data from events.

Select the Application tab in the Debug Configuration dialog box to see the following fields:

Set the following fields on the Application tab:

• Local File Path: Specifies where the files created on the target platform will be written
back into your local disk.

• Remote File Path: Specify the remote mount location from the accelerator card as
determined in an earlier step.

• Working directory: Specifies the location to write files created on the target platform.

13. Select Apply to save your changes, and Debug to start the process.

This opens the Debug perspective in the Vitis IDE, and connects to the PS application on
your hardware platform. The application automatically breaks at the main() function to let
you set up and configure the debug environment.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 322Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=322

Example of Command Line Debugging
To help you get familiar with debugging using the command line flow, this example walks you
through building and debugging the IDCT example available from the Xilinx GitHub.

1. In a terminal, set up your environment as described in Setting up the Vitis Environment.

2. If you have not already done it, clone the Vitis Examples GitHub repository to acquire all of
the Vitis examples:

git clone https://github.com/Xilinx/Vitis_Accel_Examples.git

This creates a Vitis_Examples directory which includes the IDCT example.

3. CD to the IDCT example directory:

cd Vitis_Examples/vision/idct/

The host code is fully contained in src/idct.cpp and the kernel code is part of src/
krnl_idct.cpp.

4. Build the kernel software for software emulation as discussed in Building the Device Binary.

a. Compile the kernel object file for debugging using the v++ compiler, where -g indicates
that the code is compiled for debugging:

v++ -t sw_emu --platform <DEVICE> -g -c -k krnl_idct \
-o krnl_idct.xo src/krnl_idct.cpp

b. Link the kernel object file, also specifying -g:

v++ -g -l -t sw_emu --platform <DEVICE> -config config.txt \
-o krnl_idct.xclbin krnl_idct.xo

The --config option specifies the configuration file, config.txt, that contains the
directives for the build process as described in the Vitis Compiler Configuration File. The
contents of the configuration file are as follows:

kernel_frequency=250

[connectivity]
nk=krnl_idct:1:krnl_idct_1

sp=krnl_idct_1.m_axi_gmem0:DDR[0]
sp=krnl_idct_1.m_axi_gmem1:DDR[0]
sp=krnl_idct_1.m_axi_gmem2:DDR[1]

[advanced]
prop=solution.hls_pre_tcl='src/hls_config.tcl"

5. Compile and link the host code for debugging using the GNU compiler chain, g++ as
described in Building the Host Program:

Note: For embedded processor target platforms you will use the GNU Arm cross-compiler as described
in Compiling and Linking for Arm.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 323Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/vision/idct
https://github.com/Xilinx/Vitis_Accel_Examples
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=323

a. Compile host code C++ files for debugging using the -g option:

g++ -c -I${XILINX_XRT}/include -g -o idct.o src/idct.cpp

b. Link the object files for debugging using -g:

g++ -g -lOpenCL -lpthread -lrt -lstdc++ -L${XILINX_XRT}/lib/ -o idct
idct.o

6. As described in emconfigutil Utility, prepare the emulation environment using the following
command:

emconfigutil --platform <device>

The actual emulation mode (sw_emu or hw_emu) then needs to be set through the
XCL_EMULATION_MODE environment variable. In C-shell this would be as follows:

setenv XCL_EMULATION_MODE sw_emu

7. As described in xrt.ini File, you must setup the runtime for debug. In the same directory as
the compiled host application, create an xrt.ini file with the following content:

[Debug]
app_debug=true

8. Run GDB on the host and kernel code. The following steps guide you through the command
line debug process which requires three separate command terminals, setup as described in
Setting up the Vitis Environment.

a. In the first terminal, start the XRT debug server, which handles the transactions between
the host and kernel code:

${XILINX_VITIS}/bin/xrt_server --sdx-url

b. In a second terminal, set the emulation mode:

setenv XCL_EMULATION_MODE sw_emu

Run GDB by executing the following:

xgdb –-args idct krnl_idct.xclbin

Enter the following on the gdb prompt:

run

c. In the third terminal, attach the software emulation or hardware emulation model to GDB
to allow stepping through the design. Here, there is a difference between running
software emulation and hardware emulation. In either flow, start up another xgdb:

xgdb

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 324Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=324

• For debugging in software emulation:

○ Type the following on the gdb prompt:

file <XILINX_VITIS>/data/emulation/unified/cpu_em/generic_pcie/
model/genericpciemodel

Note: Because GDB does not expand the environment variable, you must specify the path to
the Vitis software platform installation as represented by <XILINX_VITIS>

• For debugging in hardware emulation:

1. Locate the xrt_server temporary directory: /tmp/sdx/$uid.

2. Find the xrt_server process ID (PID) containing the DWARF file of this debug
session.

3. At the gdb prompt, run:

file /tmp/sdx/$uid/$pid/NUM.DWARF

• In either case, connect to the kernel process:

target remote :NUM

Where NUM is the number returned by the xrt_server as the GDB listener port.

At this point, debugging the host and kernel code can be done as usual with GDB, with
the host code and the kernel code running in two different GDB sessions. This is common
when dealing with different processes.

IMPORTANT! Be aware that the application might hit a breakpoint in one process before the
next breakpoint in the other process is hit. In these cases, the debugging session in one terminal
appears to hang, while the second terminal is waiting for input.

Section IV: Profiling, Optimizing, and Debugging the Application
Chapter 21: Debugging Applications and Kernels

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 325Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=325

Section V

Vitis Environment Reference
Materials

Revision History

The following table shows the revision history for this section.

Section Revision Summary
08/20/2020 Version 2020.1

Entire section No updates to this section.

06/24/2020 Version 2020.1

Vitis Compiler General Options Updated the details of the following commands:

• --custom_script

• --export_script

• --advanced.param

06/03/2020 Version 2020.1

Vitis Compiler Command Updated for Vitis HLS.

Vitis Compiler General Options Made significant updates to the following options:

• --custom_script

• --dk

• --from_step

• --no_ip_cache

• --remote_ip_cache

• --reuse_impl

• --to_step

• --trace_memory

--advanced Options Made significant updates to the following options:

• --advanced.param

• --advanced.prop

Section V: Vitis Environment Reference Materials

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 326Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=326

Section Revision Summary
--clock Options Added new options:

• --clock.defaultTolerance

• --clock.tolerance

--connectivity Options Updated --connectivity.sc option

--linkhook Options Added new section.

--package Options Added new section.

--vivado Options Made significant updates to the --vivado.prop option.

launch_emulator Utility Added new section.

manage_ipcache Utility Added new section.

platforminfo Utility Added platforminfo example for embedded processors.

xbutil Utility Added additional information about the xbutil utility.
Made significant updates to all commands in this section.

xbmgmt Utility Added additional information about the xbmgmt utility.
Made significant updates to all commands in this section.

xclbinutil Utility Made significant updates to the following sections:

• xclbin Information

• Tool Generation Information

xrt.ini File Added the following new keys:

• Runtime group: ert_polling,
exclusive_cu_context

• Debug group: continuous_trace,
continuous_trace_interval_ms, lop_trace,
power_profile

• Emulation group: debug_mode (replaces
launch_waveform), user_pre_sim_script,
user_post_sim_script, xtlm_aximm_log,
xtlm_axis_log, timeout_scale

HLS Pragmas Added new pragmas to table.

Note: Starting in the 2020.1 release, all pragma descriptions
are located in Vitis HLS Flow.

Introduction

The reference materials contained here include the following:

• Vitis Compiler Command: A description of the compiler options (-c), the linking options (-l),
options common to both compile and linking, and a discussion of the --config options.

Section V: Vitis Environment Reference Materials

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 327Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=irn1582730075765.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=327

• The xrt.ini file is used to initialize XRT to produce reports, debug, and profiling data as it
transacts business between the host and kernels. This file is used when the application is run,
for emulation or hardware builds, and must be created manually when the build process is run
from the command line.

• Various Xilinx utilities are provided for the Vitis tools and Xilinx® Runtime (XRT) to provide
detailed information about the platform resources, including SLR and memory resource
availability, to help you construct the v++ command line, and manage the build and run
process.

○ platforminfo Utility: The platforminfo utility queries the platforms for which Vitis™
installation to use.

○ kernelinfo Utility: The kernelinfo utility prints the function definitions in the given Xilinx
object file (O) file.

○ emconfigutil Utility: The emulation configuration utility (emconfigutil) is used to
automate the creation of the emulation configuration file.

○ xclbinutil Utility: The xclbinutil utility operates on a xclbin produced by the Vitis
Compiler.

○ xbutil Utility: The Xilinx Board Utility (xbutil) is a command line tool used to perform
various board installation, administration, and debug tasks.

○ xbmgmt Utility: The Xilinx® Board Management (xbmgmt) utility is a standalone command
line tool that is included with the Xilinx Runtime (XRT) installation package. It supports
both Alveo Data Center accelerator cards and embedded processor-based platforms.

TIP: The Xilinx® Runtime (XRT) Architecture reference material is available on the Xilinx Runtime
GitHub repository.

• package_xo Command: The Tcl command used in the Vivado Design Suite to package an RTL
IP into an .xo file, as described in RTL Kernels.

• HLS Pragmas: A description of pragmas used by the Vitis HLS tool in synthesizing C/C++
kernels.

• OpenCL Attributes: Descriptions of __attributes that can be added to OpenCL™ kernels
to direct the results of the kernel build process.

Section V: Vitis Environment Reference Materials

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 328Send Feedback

https://xilinx.github.io/XRT/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=328

Chapter 22

Vitis Compiler Command
This section describes the Vitis compiler command, v++, and the various options it supports for
both compiling and linking FPGA binary.

The Vitis compiler is a standalone command line utility for both compiling kernel accelerator
functions into Xilinx object (.xo) files, and linking them with other .xo files and supported
platforms to build an FPGA binary.

For additional information about the use of the v++ command options for compile, link,
packaging, and general processes, see these additional sections:

• Compiling Kernels with Vitis Compiler

• Linking the Kernels

• Packaging the System

Vitis Compiler General Options
The Vitis compiler supports many options for both the compilation process and the linking
process. These options provide a range of features, and some apply specifically to compile or link,
while others can be used, or are required for both compile and link.

TIP: All Vitis compiler options can be specified in a configuration file for use with the --config  option,
as discussed in the Vitis Compiler Configuration File. For example, the --platform  option can be
specified in a configuration file without a section head using the following syntax:

platform=xilinx_u200_xdma_201830_2

--board_connection

• Applies to: Compile and link

--board_connection

Specifies a dual in-line memory module (DIMM) board file for each DIMM connector slot. The
board is specified using the Vendor:Board:Name:Version (vbnv) attribute of the DIMM card as it
appears in the board repository.

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 329Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=329

For example:

<DIMM_connector>:<vbnv_of_DIMM_board>

-c | --compile

• Applies to: Compile

--compile

Required for compilation, but mutually exclusive with --link. Run v++ -c to generate .xo
files from kernel source files.

--config

• Applies to: Compile and link

--config <config_file> ...

Specifies a configuration file containing v++ switches. The configuration file can be used to
capture compilation or linking strategies, that can be easily reused by referring to the config file
on the v++ command line. In addition, the config file allows the v++ command line to be
shortened to include only the options that are not specified in the config file. Refer to the Vitis
Compiler Configuration File for more information.

Multiple configuration files can be specified on the v++ command line. A separate --config
switch is required for each file used. For example:

v++ -l --config cfg_connectivity.txt --config cfg_vivado.txt ...

--custom_script

• Applies to: Compile and link

--custom_script <kernel_name>:<file_name>

This option lets you specify custom Tcl scripts to be used in the build process during compilation
or linking. Use with the --export_script option to create, edit, and run the scripts to
customize the build process.

When used with the v++ --compile command, this option lets you specify a custom HLS
script to be used when compiling the specified kernel. The script lets you modify or customize
the Vitis HLS tool. Use the --export_script option to extract a Tcl script Vitis HLS uses to
compile the kernel, modify the script as needed, and resubmit using the --custom_script
option to better manage the kernel build process.

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 330Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=330

The argument lets you specify the kernel name, and path to the Tcl script to apply to that kernel.
For example:

v++ -c -k kernel1 -export_script ...
*** Modify the exported script to customize in some way, then resubmit. ****
v++ -c --custom_script kernel1:./kernel1.tcl ...

When used with the v++ --link command for the hardware build target (-t hw), this option
lets you specify the absolute path to an edited run_script_map.dat file, This file contains a
list of steps in the build process, and Tcl scripts that are run by the Vitis and Vivado tools during
those steps. You can edit run_script_map.dat to specify custom Tcl scripts to run at those
steps in the build process. You must use the following steps to customize the Tcl scripts:

1. Run the build process specifying the --export_script option as follows:

v++ -t hw -l -k kernel1 -export_script ...

2. Copy the Tcl scripts referenced in the run_script_map.dat file for any of the steps you
want to customize. For example, copy the Tcl file specified for the synthesis run, or the
implementation run. You must copy the file to a separate location, outside of the project build
structure.

3. Edit the Tcl script to add or modify any of the existing commands to create a new custom Tcl
script.

4. Edit the run_script_map.dat file to point a specific implementation step to the new
custom script.

5. Relaunch the build process using the --custom_script option, specifying the absolute
path to the run_script_map.dat file as shown below:

v++ -t hw -l -k kernel1 -custom_script /path/to/run_script_map.dat

IMPORTANT! When editing a custom synthesis run script, you must either comment out the lines related
to the dont_touch.xdc  file, or edit the lines to point to a new user-specified dont_touch.xdc  file.
The specific lines to comment or edit are shown below:

read_xdc dont_touch.xdc
set_property used_in_implementation false [get_files dont_touch.xdc]

The synthesis run will return an error related to a missing dont_touch.xdc file if this is not done.

-D | --define

• Applies to: Compile and link

--define <arg>

Valid macro name and definition pair: <name>=<definition>.

Predefine name as a macro with definition. This option is passed to the v++ pre-processor.

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 331Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=331

--dk

• Applies to: Compile and link

--dk <arg>

This option enables debug IP core insertion in the FPGA binary (.xclbin) for hardware
debugging. This option lets you specify the type of debug core to add, and which compute unit
and interfaces to monitor with ChipScope™. The --dk option allows you to attach AXI protocol
checkers and System ILA cores at the interfaces to the kernels for debugging and performance
monitoring purposes.

The System Integrated Logic Analyzer (ILA) provides transaction level visibility into an
accelerated kernel or function running on hardware. AXI traffic of interest can also be captured
and viewed using the System ILA core.

The AXI Protocol Checker debug core is designed to monitor AXI interfaces on the accelerated
kernel. When attached to an interface of a CU, it actively checks for protocol violations and
provides an indication of which violation occurred.

Valid values for <arg> include:

[protocol|chipscope|list_ports]:<cu_name>:<interface_name>

Where:

• protocol adds the AXI Protocol Checker debug core to the design. Can be specified with the
keyword all, or the <cu_name>:<interface_name>.

• chipscope adds the System Integrated Logic Analyzer debug core to the design. The
chipscope option can not accept the keyword all, and requires the <cu_name> to be
specified, and optionally the <interface_name>.

• list_ports shows a list of valid compute units and port combinations in the current design.
This is informational to help you with crafting the command line or config file.

• <cu_name> specifies the compute unit to apply the --dk option to.

• <interface_name> is optional. If not specified, all ports on the specified CU are expected
to be analyzed.

For example:

v++ --link --dk chipscope:vadd_1

--export_script

• Applies to: Compile and link

--export_script

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 332Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=332

This option runs the build process up to the point of exporting a script file, or list of script files,
and then stops execution. The build process must be completed using the --custom_script
option. This lets you edit the exported script, or list of scripts, and then rerun the build using your
custom scripts.

When used with the v++ --compile command, this option exports a Tcl script for the
specified kernel, <kernel_name>.tcl, that can be used to execute Vitis HLS, but stops the
build process before actually launching the HLS tool. This lets you interrupt the build process to
edit the generated Tcl script, and then restart the build process using the --custom_script
option, as shown in the following example:

v++ -c -k kernel1 -export_script ...

TIP: This option is not supported for software emulation (–t sw_emu ) of OpenCL kernels.

When used with the v++ --link command for the hardware build target (-t hw), this option
exports a run_script_map.dat file in the current directory. This file contains a list of steps in
the build process, and Tcl scripts that are run by the Vitis and Vivado tools during those steps.
You can edit the specified Tcl scripts, customizing the build process in those scripts, and relaunch
the build using the --custom_script option. Export the run_script_map.dat file using
the following command:

v++ -t hw -l -k kernel1 -export_script ...

--from_step

• Applies to: Compile and link

--from_step <arg>

Specifies a step name for the Vitis compiler build process, to start the build process from that
step. If intermediate results are available, the link process will fast forward and begin execution at
the named step if possible. This allows you to run the build through a --to_step, and then
resume the build process at the --from_step, after interacting with your project in some
method. You can use the --list_step option to determine the list of valid steps.

IMPORTANT! The --from_step  and --to_step  options are incremental build options that require
you to use the same project directory when launching the Vitis compiler using --from_step  to resume
the build as you specified when using --to_step  to start the build.

For example:

v++ --link --from_step vpl.update_bd

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 333Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=333

-g | --debug

• Applies to: Compile and link

-g

Generates code for debugging the kernel. Using this option adds features to facilitate debugging
the kernel as it is compiled and the FPGA binary is built.

For example:

v++ -g ...

-h | --help

-h

Prints the help contents for the v++ command. For example:

v++ -h

-I | --include

• Applies to: Compile and link

--include <arg>

Add the specified directory to the list of directories to be searched for header files. This option is
passed to the Vitis compiler pre-processor.

<input_file>

• Applies to: Compile and link

<input_file1> <input_file2> ...

Specifies an OpenCL or C/C++ kernel source file for v++ compilation, or Xilinx object files (.xo)
for v++ linking.

For example:

v++ -l kernel1.xo kernelRTL.xo ...

--interactive

• Applies to: Compile and link

--interactive [impl]

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 334Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=334

v++ configures necessary environment and launches the Vivado tool with the implementation
project.

Because you are interactively launching the Vivado tool, the linking process is stopped at the vpl
step, which is the equivalent of using the --to_step vpl option in your v++ command. When
you are done using the Vivado tool, and you save the design checkpoint (DCP), you can rerun the
inking command using the -from_step to pick the command up at the vpl process.

For example:

v++ --interactive impl

-j | --jobs

• Applies to: Compile and link

--jobs <arg>

Valid values specify a number of parallel jobs.

This option specifies the number of parallel jobs the Vivado Design Suite uses to implement the
FPGA binary. Increasing the number of jobs allows the Vivado implementation step to spawn
more parallel processes and complete faster.

For example:

v++ --link --jobs 4

-k | --kernel

• Applies to: Compile and link

--kernel <arg>

Compile only the specified kernel from the input file. Only one -k option is allowed per v++
command. Valid values include the name of the kernel to be compiled from the input .cl
or .c/.cpp kernel source code.

This is required for C/C++ kernels, but is optional for OpenCL kernels. OpenCL uses the kernel
keyword to identify a kernel. For C/C++ kernels, you must identify the kernel by -k or --
kernel.

When an OpenCL source file is compiled without the -k option, all the kernels in the file are
compiled. Use -k to target a specific kernel.

For example:

v++ -c --kernel vadd

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 335Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=335

--kernel_frequency

• Applies to: Compile and link

--kernel_frequency <clockID>:<freq>|<clockID>:<freq>

Specifies a user-defined clock frequency (in MHz) for the kernel, overriding the default clock
frequency defined on the hardware platform. The <freq> specifies a single frequency for
kernels with only a single clock, or can be used to specify the <clockID> and the <freq> for
kernels that support two clocks.

The syntax for overriding the clock on a platform with only one kernel clock, is to simply specify
the frequency in MHz:

v++ --kernel_frequency 300

To override a specific clock on a platform with two clocks, specify the clock ID and frequency:

v++ --kernel_frequency 0:300

To override both clocks on a multi-clock platform, specify each clock ID and the corresponding
frequency. For example:

v++ --kernel_frequency 0:300|1:500

-l | --link

--link

This is a required option for the linking process, which follows compilation, but is mutually
exclusive with --compile. Run v++ in link mode to link .xo input files and generate
an .xclbin output file.

--list_steps

• Applies to: Compile and link

--list_steps

List valid run steps for a given target. This option returns a list of steps that can be used in the --
from_step or --to_step options. The command must be specified with the following options:

• -t | --target [sw_emu | hw_emu | hw]:

• [--compile | --link]: Specifies the list of steps from either the compile or link
process for the specified build target.

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 336Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=336

For example:

v++ -t hw_emu --link --list_steps

--log_dir

• Applies to: Compile and link

--log_dir <dir_name>

Specifies a directory to store log files into. If --log_dir is not specified, the tool saves the log
files to ./_x/logs. Refer to Output Directories from the v++ Command for more information.

For example:

v++ --log_dir /tmp/myProj_logs ...

--lsf

• Applies to: Compile and link

--lsf <arg>

Specifies the bsub command line as a string to pass to an LSF cluster. This option is required to
use the IBM Platform Load Sharing Facility (LSF) for Vivado implementation and synthesis.

For example:

v++ --link --lsf '{bsub -R \"select[type=X86_64]\" -N -q medium}'

--message_rules

• Applies to: Compile and link

--message-rules <file_name>

Specifies a message rule file with rules for controlling messages. Refer to Using the Message Rule
File for more information.

For example:

v++ --message_rules ./minimum_out.mrf ...

--no_ip_cache

• Applies to: Compile and link

--no_ip_cache

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 337Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=337

Disables the IP cache for out-of-context (OOC) synthesis for Vivado Synthesis. Disabling the IP
cache repository requires the tool to regenerate the IP synthesis results for every build, and can
increase the build time. However, it also results in a clean build, eliminating earlier results for IP in
the design.

For example:

v++ --no_ip_cache ...

-O | --optimize

• Applies to: Compile and link

--optimize <arg>

This option specifies the optimization level of the Vivado implementation results. Valid
optimization values include the following:

• 0: Default optimization. Reduces compilation time and makes debugging produce the
expected results.

• 1: Optimizes to reduce power consumption. This takes more time to build the design.

• 2: Optimizes to increase kernel speed. This option increases build time, but also improves the
performance of the generated kernel.

• 3: This optimization provides the highest level performance in the generated code, but
compilation time can increase considerably.

• s: Optimizes for size. This reduces the logic resources of the device used by the kernel.

• quick: Reduces Vivado implementation time, but can reduce kernel performance, and
increases the resources used by the kernel.

For example:

v++ --link --optimize 2

-o | --output

• Applies to: Compile and link

-o <output_name>

Specifies the name of the output file generated by the v++ command. The compilation (-c)
process output name must end with the .xo suffix, for Xilinx object file. The linking (-l) process
output file must end with the .xclbin suffix, for Xilinx executable binary.

For example:

v++ -o krnl_vadd.xo

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 338Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=338

If --o or --output are not specified, the output file names will default to the following:

• a.o for compilation.

• a.xclbin for linking.

-f | --platform

• Applies to: Compile and link

--platform <platform_name>

Specifies the name of a supported acceleration platform as specified by the
$PLATFORM_REPO_PATHS environment variable, or the full path to the platform .xpfm file. For
a list of supported platforms for the release, see the Vitis 2020.1 Software Platform Release
Notes.

This is a required option for both compilation and linking, to define the target Xilinx platform of
the build process. The --platform option accepts either a platform name, or the path to a
platform file xpfm, using the full or relative path.

IMPORTANT! The specified platform and build targets for compiling and linking must match. The --
platform  and -t  options specified when the .xo  file is generated by compilation, must be the --
platform  and -t used during linking. For more information, see platforminfo Utility.

For example:

v++ --platform xilinx_u200_xdma_201830_2 ...

TIP: All Vitis compiler options can be specified in a configuration file for use with the --config  option.
For example, the platform  option can be specified in a configuration file without a section head using
the following syntax:

platform=xilinx_u200_xdma_201830_2

--profile_kernel

• Applies to: Compile and link

--profile_kernel <arg>

This option enables capturing profile data for data traffic between the kernel and host, kernel
stalls, and kernel execution times. There are three distinct forms of --profile_kernel:

• data: Enables monitoring of data ports through the monitor IPs. This option needs to be
specified during linking.

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 339Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=339

• stall: Includes stall monitoring logic in the FPGA binary. However, it requires the addition of
stall ports on the kernel interface. To facilitate this, the stall option is required for both
compilation and linking.

• exec: This option records the execution times of the kernel and provides minimum port data
collection during the system run. The execution time of the kernel is also collected by default
for data or stall data collection. This option needs to be specified during linking.

IMPORTANT! Using the --profile_kernel  option in v++  also requires the addition of the
profile=true  statement to the xrt.ini  file. Refer to xrt.ini File.

The syntax for data profiling is:

data:[<kernel_name> | all]:[<cu_name> | all]:[<interface_name> | all]
(:[counters | all])

The kernel_name, cu_name, and interface_name can be specified to determine the
specific interface the performance monitor is applied to. However, you can also specify the
keyword all to apply the monitoring to all existing kernels, compute units, and interfaces with a
single option.

The last option, <counters|all> is not required, as it defaults to all when not specified. It
allows you to restrict the information gathering to just counters for larger designs, while all
will include the collection of actual trace information.

The syntax for stall or exec profiling is:

[stall | exec]:[<kernel_name> | all]:[<cu_name> | all](:[counters |
all])

TIP: For stall  or exec , the <interface_name>  field is not used.

The following example enables logging profile data for all interfaces, on all CUs for all kernels:

v++ -g -l --profile_kernel data:all:all:all ...

TIP: The --profile_kernel  option is additive and can be used multiple times to specify profiling for
different kernels, CUs, and interfaces.

--remote_ip_cache

• Applies to: Compile and link

--remote_ip_cache <dir_name>

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 340Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=340

Specifies the location of the remote IP cache directory for Vivado Synthesis to use during out-of-
context (OOC) synthesis of IP. OOC synthesis lets the Vivado synthesis tool reuse synthesis
results for IP that have not been changed in iterations of a design. This can reduce the time
required to build your .xclbin files, due to reusing synthesis results.

When the --remote_ip_cache option is not specified the IP cache is written to the current
working directory from which v++ was launched. You can use this option to provide a different
cache location, used across multiple projects for instance.

For example:

v++ --remote_ip_cache /tmp/IP_cache_dir ...

--report_dir

• Applies to: Compile and link

--report_dir <dir_name>

Specifies a directory to store report files into. If --report_dir is not specified, the tool saves
the report files to ./_x/reports. Refer to Output Directories from the v++ Command for more
information.

For example:

v++ --report_dir /tmp/myProj_reports ...

-R | --report_level

• Applies to: Compile and link

--report_level <arg>

Valid report levels: 0, 1, 2, estimate.

These report levels have mappings kept in the optMap.xml file. You can override the installed
optMap.xml to define custom report levels.

• -R0 specification turns off all intermediate design checkpoint (DCP) generation during Vivado
implementation. Turns on post-route timing report generation.

• The -R1 specification includes everything from -R0, plus report_failfast pre-
opt_design, report_failfast post-opt_design, and enables all intermediate DCP
generation.

• The -R2 specification includes everything from -R1, plus report_failfast post-
route_design.

• The -Restimate specification forces Vitis HLS to generate a design.xml file if it does not
exist and then generates a System Estimate report, as described in System Estimate Report.

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 341Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=341

TIP: This option is useful for the software emulation build (-t sw_emu ), when design.xml  is not
generated by default.

For example:

v++ -R2 ...

--reuse_impl

--reuse_impl <arg>

• Applies to: Link

Specifies the path and file name of an implemented design checkpoint (DCP) file to use when
generating the FPGA binary (xclbin) file. The link process uses the specified implemented DCP
to extract the FPGA bitstream and generates the xclbin. You can manually edit the Vivado
project created by a previously completed Vitis build, or specify the --to_step option to
interrupt the Vitis build process and manually place and route a synthesized design, for instance.
This allows you to work interactively with Vivado Design Suite to change the design and use
DCP in the build process.

IMPORTANT! The --reuse_impl  option is an incremental build option that requires you to use the
same project directory when resuming the Vitis compiler with --reuse_impl  that you specified when
using --to_step  to start the build.

For example:

v++ --link --reuse_impl ./manual_design.dcp

-s | --save-temps

• Applies to: Compile and link

--save-temps

Directs the v++ command to save intermediate files/directories created during the compilation
and link process. Use the --temp_dir option to specify a location to write the intermediate
files to.

TIP: This option is useful for debugging when you encounter issues in the build process.

For example:

v++ --save_temps ...

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 342Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=342

-t | --target

• Applies to: Compile and link

-t [sw_emu | hw_emu | hw]

Specifies the build target, as described in Build Targets. The build target determines the results of
the compilation and linking processes. You can choose to build an emulation model for debug
and test, or build the actual system to run in hardware. The build target defaults to hw if -t is not
specified.

IMPORTANT! The specified platform and build targets for compiling and linking must match. The --
platform  and -t  options specified when the .xo  file is generated by compilation must be the --
platform  and -t used during linking.

The valid values are:

• sw_emu: Software emulation.

• hw_emu: Hardware emulation.

• hw: Hardware.

For example:

v++ --link -t hw_emu

--temp_dir

• Applies to: Compile and link

--temp_dir <dir_name>

This allows you to manage the location where the tool writes temporary files created during the
build process. The temporary results are written by the v++ compiler, and then removed, unless
the --save-temps option is also specified.

If --temp_dir is not specified, the tool saves the temporary files to ./_x/temp. Refer to
Output Directories from the v++ Command for more information.

For example:

v++ --temp_dir /tmp/myProj_temp ...

--to_step

• Applies to: Compile and link

--to_step <arg>

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 343Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=343

Specifies a step name, for either the compile or link process, to run the build process through that
step. You can use the --list_step option to determine the list of valid compile or link steps.

The build process will terminate after completing the named step. At this time, you can interact
with the build results. For example, manually accessing the HLS project or the Vivado Design
Suite project to perform specific tasks before returning to the build flow, launch the v++
command with the --from_step option.

IMPORTANT! The --to_step  and --from_step  options are incremental build options that require
you to use the same project directory when launching the Vitis compiler using --from_step  to resume
the build as you specified when using --to_step  to start the build.

You must also specify --save-temps when using --to_step to preserve the temporary files
required by the Vivado tools. For example:

v++ --link --save-temps --to_step vpl.update_bd

--trace_memory

• Applies to: Compile and link

--trace_memory <arg>

Use with the --profile_kernel option when linking with hardware target, to specify the type
and amount of memory to use for capturing trace data.

<FIFO>:<size>|<MEMORY>[<n>] specifies trace buffer memory type for profiling.

• FIFO:<size>: Specified in KB. Default is FIFO:8K. The maximum is 4G.

• Memory[<N>]: Specifies the type and number of memory resource on the platform. Memory
resources for the target platform can be identified with the platforminfo command.
Supported memory types include HBM, DDR, PLRAM, HP, ACP, MIG, and MC_NOC. For
example, DDR[1].

IMPORTANT! When using --trace_memory  during the linking step, you should also use the
[Debug] trace_buffer_size  in the xrt.ini  file as described in xrt.ini File.

-v | --version

-v

Prints the version and build information for the v++ command. For example:

v++ -v

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 344Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=344

--user_board_repo_paths

• Applies to: Compile and link

--user_board_repo_paths

Specifies an existing user board repository for DIMM board files. This value will be pre-pended to
the board_part_repo_paths property of the Vivado project.

--user_ip_repo_paths

• Applies to: Compile and link

--user_ip_repo_paths <repo_dir>

Specifies the directory location of one or more user IP repository paths to be searched first for IP
used in the kernel design. This value is appended to the start of the ip_repo_paths used by
the Vivado tool to locate IP cores. IP definitions from these specified paths are used ahead of IP
repositories from the hardware platform (.xsa) or from the Xilinx IP catalog.

TIP: Multiple --user_ip_repo_paths  can be specified on the v++  command line.

The following lists show the priority order in which IP definitions are found during the build
process, from high to low. Note that all of these entries can possibly include multiple directories
in them.

• For the system hardware build (-t hw):

1. IP definitions from --user_ip_repo_paths.

2. Kernel IP definitions (vpl --iprepo switch value).

3. IP definitions from the IP repository associated with the platform.

4. IP cache from the installation area (for example, <Install_Dir>/Vitis/2019.2/
data/cache/).

5. Xilinx IP catalog from the installation area (for example, <Install_Dir>/Vitis/
2019.2/data/ip/)

• For the hardware emulation build (-t hw_emu):

1. IP definitions and User emulation IP repository from --user_ip_repo_paths.

2. Kernel IP definitions (vpl --iprepo switch value).

3. IP definitions from the IP repository associated with the platform.

4. IP cache from the installation area (for example, <Install_Dir>/Vitis/2019.2/
data/cache/).

5. $::env(XILINX_VITIS)/data/emulation/hw_em/ip_repo

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 345Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=345

6. $::env(XILINX_VIVADO)/data/emulation/hw_em/ip_repo

7. Xilinx IP catalog from the installation area (for example, <Install_Dir>/Vitis/
2019.2/data/ip/)

For example:

v++ --user_ip_repo_paths ./myIP_repo ...

--advanced Options
The --advanced.param and --advanced.prop options specify parameters and properties
for use by the v++ command. When compiling or linking, these options offer fine-grain control
over the hardware generated by the Vitis core development kit, and the hardware emulation
process.

The arguments for the --advanced.xxx options are specified as
<param_name>=<param_value>. For example:

v++ --link -–advanced.param compiler.enableXSAIntegrityCheck=true
-–advanced.prop kernel.foo.kernel_flags="-std=c++0x"

TIP: All Vitis compiler options can be specified in a configuration file for use with the --config  option,
as discussed in Vitis Compiler Configuration File. For example, the --platform  option can be specified
in a configuration file without a section head using the following syntax:

platform=xilinx_u200_xdma_201830_2

--advanced.param

--advanced.param <param_name>=<param_value>

Specifies advanced parameters as described in the table below.

Table 32: Param Options

Parameter Name Valid Values Description
compiler.acceleratorBinaryContent Type: String

Default Value:
<empty>

Content to insert in xclbin. Valid options
are bitstream and dcp.

compiler.addOutputTypes Type: String
Default Value:
<empty>

Additional output types produced by the Vitis
compiler. Valid values include: xclbin,
sd_card, hw_export, and qspi.

compiler.errorOnHoldViolation Type: Boolean
Default Value: TRUE

Error out if there is hold violation.

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 346Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=346

Table 32: Param Options (cont'd)

Parameter Name Valid Values Description
compiler.fsanitize Type: String

Default Value:
<empty>

Enables additional memory access checks for
OpenCL kernels as described in Debugging
OpenCL Kernels. Valid values include:
address, memory.

compiler.interfaceRdBurstLen Type: Int Range
Default Value: 0

Specifies the expected length of AXI read
bursts on the kernel AXI interface. This is
used with option
compiler.interfaceRdOutstanding to
determine the hardware buffer sizes. Values
are 1 through 256.

compiler.interfaceWrBurstLen Type: Int Range
Default Value: 0

Specifies the expected length of AXI write
bursts on the kernel AXI interface. This is
used with option
compiler.interfaceWrOutstanding to
determine the hardware buffer sizes. Values
are 1 through 256.

compiler.interfaceRdOutstanding Type: Int Range
Default Value: 0

Specifies how many outstanding reads to
buffer are on the kernel AXI interface. Values
are 1 through 256.

compiler.interfaceWrOutstanding Type: Int Range
Default Value: 0

Specifies how many outstanding writes to
buffer are on the kernel AXI interface. Values
are 1 through 256.

compiler.maxComputeUnits Type: Int
Default Value: -1

Maximum compute units allowed in the
system. Any positive value will overwrite the
numComputeUnits setting in the hardware
platform (.xsa). The default value of -1
preserves the setting in the platform.

compiler.skipTimingCheckAndFrequencyScali
ng

Type: Boolean
Default Value: FALSE

This parameter causes the Vivado tool to skip
the timing check and optional clock
frequency scaling that occurs after the last
step of implementation process, which is
either route_design or post-route
phys_opt_design.

compiler.userPreCreateProjectTcl Type: String
Default Value:
<empty>

Specifies a Tcl script to run before creating
the Vivado project in the Vitis build process.

compiler.userPreSysLinkOverlayTcl Type: String
Default Value:
<empty>

Specifies a Tcl script to run after opening the
Vivado IP integrator block design, before
running the compiler-generated dr.bd.tcl
script in the Vitis build process.

compiler.userPostSysLinkOverlayTcl Type: String
Default Value:
<empty>

Specifies a Tcl script to run after running the
compiler-generated dr.bd.tcl script.

compiler.userPostDebugProfileOverlayTcl Type: String
Default Value:
<empty>

Specifies a Tcl script to run after validating
the Vivado IP integrator block design in the
Vitis build process.

compiler.worstNegativeSlack Type: Float
Default Value: 0

Specifies the worst acceptable negative slack
for the design, specified in nanoseconds (ns).
When negative slack exceeds the specified
value, the tool might try to scale the clock
frequency to achieve timing results.

compiler.xclDataflowFifoDepth Type: Int
Default Value: -1

Specifies the depth of FIFOs used in kernel
data flow region.

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 347Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=347

Table 32: Param Options (cont'd)

Parameter Name Valid Values Description
hw_emu.compiledLibs Type: String

Default Value:
<empty>

Uses mentioned clibs for the specified
simulator.

hw_emu.debugMode gdb | wdb
Default Value: wdb

Compile time switch to reduce v++
compilation time as it avoids doing Vivado
simulator elaboration when set to GDB.
The default value is WDB and runs simulation
in waveform mode.
This option only works in combination with
the -g or --debug options.

hw_emu.enableProtocolChecker Type: Boolean
Default Value: FALSE

Enables the lightweight AXI protocol checker
(lapc) during HW emulation. This is used to
confirm the accuracy of any AXI interfaces in
the design.

hw_emu.platformPath Type: String
Default Value:
<empty>

Specifies the path to the custom platform
directory. The <platformPath> directory
should meet the following requirements to
be used in platform creation:
• The directory should contain a

subdirectory called ip_repo.

• The directory should contain a
subdirectory called scripts and this
scripts directory should contain a
hw_em_util.tcl file. The
hw_em_util.tcl file should have the
following two procedures defined in it:
○ hw_em_util::add_base_platform

○ hw_em_util::generate_simulati
on_scripts_and_compile

hw_emu.scDebugLevel none | waveform |
log |
waveform_and_log
Default Value:
waveform_and_log

Sets the TLM transaction debug level of the
Vivado logic simulator (xsim).

• NONE for optimized

• LOG to dump TLM transaction log info
into report file

• WAVEFORM for enabling the TLM
transaction waveform view

• WAVEFORM_AND_LOG for both the Log
Messages and Waveform view

hw_emu.simulator XSIM | QUESTA
Default Value: XSIM

Uses the specified simulator for the
hardware emulation run.

For example:

--advanced.param compiler.addOutputTypes="hw_export"

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 348Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=348

TIP: This option can be specified in a configuration file under the [advanced]  section head using the
following format:

[advanced]
param=compiler.addOutputTypes="hw_export"

--advanced.prop

--advanced.prop <arg>

Specifies advanced kernel or solution properties for kernel compilation where <arg> is one of
the values described in the table below.

Table 33: Prop Options

Property Name Valid Values Description
kernel.<kernel_name>.kernel_flags Type: String

Default Value:
<empty>

Sets specific compile flags on the kernel
<kernel_name>.

solution.device_repo_path Type: String
Default Value:
<empty>

Specifies the path to a repository of hardware
platforms. The --platform option with full
path to the .xpfm platform file should be used
instead.

solution.hls_pre_tcl Type: String
Default Value:
<empty>

Specifies the path to a Vitis HLS Tcl file, which is
executed before the C code is synthesized. This
allows Vitis HLS configuration settings to be
applied prior to synthesis.

solution.hls_post_tcl Type: String
Default Value:
<empty>

Specifies the path to a Vitis HLS Tcl file, which is
executed after the C code is synthesized.

solution.kernel_compiler_margin Type: Float
Default Value: 12.5% of
the kernel clock
period.

The clock margin (in ns) for the kernel. This
value is subtracted from the kernel clock period
prior to synthesis to provide some margin for
place and route delays.

--advanced.misc

--advanced.misc <arg>

Specifies advanced tool directives for kernel compilation.

--clock Options
IMPORTANT! The --clock  options are only intended for use with embedded processor platforms, and
do not support Alveo data center accelerator cards at this time.

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 349Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=349

The --clock.XXX options provide a method for assigning clocks to kernels from the v++
command line and locating the required kernel clock frequency source during the linking process.
There are a number of options that can be used with increasing specificity. The order of
precedence is determined by how specific a clock option is. The rules are listed in order from
general to specific, where the specific rules take precedence over the general rules:

• When no --clock.XX option is specified, the platform default clock will be applied. For 2-
clock kernels, clock ID 0 will be assigned to ap_clk and clock ID 1 will be assigned to
ap_clk_2.

• Specifying --clock.defaultId=<id> defines a specific clock ID for all kernels, overriding
the platform default clock.

• Specifying --clock.defaultFreq=<Hz> defines a specific clock frequency for all kernels
that overrides a user specified default clock ID, and the platform default clock.

• Specifying --clock.id=<id>:<cu> assigns the specified clock ID to all clock pins on the
specified CU, overriding user specified default frequency, ID, and the platform default clock.

• Specifying --clock.id=<id>:<cu>.<clk0> assigns the specified clock ID to the specified
clock pin on the specified CU.

• Specifying --clock.freqHz=<Hz>:<cu> assigns the specified clock frequency to all clock
pins on the specified CU.

• Specifying --clock.freqHz=<Hz>:<cu>.<clk0> assigns the specified clock frequency to
the specified clock pin on the specified CU.

--clock.defaultFreqHz

--clock.defaultFreqHz <arg>

Specifies a default clock frequency in Hz to use for all kernels. This lets you override the default
platform clock, and assign the clock with the specified clock frequency as the default. Where
<arg> is specified as the clock frequency in Hz.

For example:

v++ --link --clock.defaultFreqHz 300000000

TIP: This option can be specified in a configuration file under the [clock]  section head using the
following format:

[clock]
defaultFreqHz=300000000

--clock.defaultId

--clock.defaultId <arg>

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 350Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=350

Specifying --clock.defaultId=<id> defines a specific clock ID for all kernels, overriding the
platform default clock. Where <arg> is specified as the clock ID from one of the clocks defined
on the target platform, other than the default clock ID.

TIP: You can determine the available clock IDs for a target platform using the platforminfo  utility as
described in platforminfo Utility.

For example:

v++ --link --clock.defaultId 1

TIP: This option can be specified in a configuration file under the [clock]  section head using the
following format:

[clock]
defaultId=1

--clock.defaultTolerance

--clock.defaultTolerance <arg>

Specifies a default clock tolerance as a value, or as a percentage of the default clock frequency.
When specifying clock.defaultFreqHz, you can also specify the tolerance with either a
value or percentage. This will update timing constraints to reflect the accepted tolerance.

The tolerance value, <arg>, can be specified as a whole number, indicating the
clock.defaultFreqHz ± the specified tolerance; or as a percentage of the default clock
frequency specified as a decimal value.

IMPORTANT! The default clock tolerance is 5% when this option is not specified.

For example:

v++ --link --clock.defaultFreqHz 300000000 --clock.defaultTolerance 0.10

TIP: This option can be specified in a configuration file under the [clock]  section head using the
following format:

[clock]
defaultTolerance=0.10

--clock.freqHz

--clock.freqHz <arg>

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 351Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=351

Specifies a clock frequency in Hz and assigns it to a list of associated compute units (CUs) and
optionally specific clock pins on the CU. Where <arg> is specified as
<frequency_in_Hz>:<cu_0>[.<clk_pin_0>][,<cu_n>[.<clk_pin_n>]]:

• <frequency_in_Hz>: Defines the clock frequency specified in Hz.

• <cu_0>[.<clk_pin_0>][,<cu_n>[.<clk_pin_n>]]: Applies the defined frequency to
the specified CUs, and optionally to the specified clock pin on the CU.

For example:

v++ --link --clock.freqHz 300000000:vadd_1,vadd_3

TIP: This option can be specified in a configuration file under the [clock]  section head using the
following format:

[clock]
freqHz=300000000:vadd_1,vadd_3

--clock.id

--clock.id <arg>

Specifies an available clock ID from the target platform and assigns it to a list of associated
compute units (CUs) and optionally specific clock pins on the CU. Where <arg> is specified as
<reference_ID>:<cu_0>[.<clk_pin_0>][,<cu_n>[.<clk_pin_n>]]:

• <reference_ID>: Defines the clock ID to use from the target platform.

TIP: You can determine the available clock IDs for a target platform using the platforminfo  utility
as described in platforminfo Utility.

• <cu_0>[.<clk_pin_0>][,<cu_n>[.<clk_pin_n>]]: Applies the defined frequency to
the specified CUs and optionally to the specified clock pin on the CU.

For example:

v++ --link --clock.id 1:vadd_1,vadd_3

TIP: This option can be specified in a configuration file under the [clock]  section head using the
following format:

[clock]
id=1:vadd_1,vadd_3

--clock.tolerance

--clock.tolerance <arg>

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 352Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=352

Specifies a clock tolerance as a value, or as a percentage of the clock frequency. When specifying
--clock.freqHz, you can also specify the tolerance with either a value or percentage. This will
update timing constraints to reflect the accepted tolerance. Where <arg> is specified as
<tolerance>:<cu_0>[.<clk_pin_0>][,<cu_n>[.<clk_pin_n>]]

• <tolerance>: Can be specified either as a whole number, indicating the clock.freqHz ±
the specified tolerance value; or as a percentage of the clock frequency specified as a decimal
value.

• <cu_0>[.<clk_pin_0>][,<cu_n>[.<clk_pin_n>]]: Applies the defined clock
tolerance to the specified CUs, and optionally to the specified clock pin on the CU.

IMPORTANT! The default clock tolerance is 5% of the clock.FreqHz when this option is not specified.

For example:

v++ --link --clock.tolerance 0.10:vadd_1,vadd_3

TIP: This option can be specified in a configuration file under the [clock]  section head using the
following format:

[clock]
tolerance=0.10:vadd_1,vadd_3

--connectivity Options
As discussed in Linking the Kernels, there are a number of --connectivity.XXX options that
let you define the topology of the FPGA binary, specifying the number of CUs, assigning them to
SLRs, connecting kernel ports to global memory, and establishing streaming port connections.
These commands are an integral part of the build process, critical to the definition and
construction of the application.

--connectivity.nk

--connectivity.nk <arg>

Where <arg> is specified as
<kernel_name>:#:<cu_name1>.<cu_name2>...<cu_name#>.

This instantiates the specified number of CU (#) for the specified kernel (kernel_name) in the
generated FPGA binary (.xclbin) file during the linking process. The cu_name is optional. If
the cu_name is not specified, the instances of the kernel are simply numbered:
kernel_name_1, kernel_name_2, and so forth. By default, the Vitis compiler instantiates one
compute unit for each kernel.

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 353Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=353

For example:

v++ --link --connectivity.nk vadd:3:vadd_A.vadd_B.vadd_C

TIP: This option can be specified in a configuration file under the [connectivity]  section head using
the following format:

[connectivity]
nk=vadd:3:vadd_A.vadd_B.vadd_C

--connectivity.slr

--connectivity.slr <arg>

Use this option to assign a CU to a specific SLR on the device. The option must be repeated for
each kernel or CU being assigned to an SLR.

IMPORTANT! If you use --connectivity.slr  to assign the kernel placement, then you must also
use --connectivity.sp  to assign memory access for the kernel.

Valid values include:

<cu_name>:<SLR_NUM>

Where:

• <cu_name> is the name of the compute unit as specified in the --connectivity.nk
option. Generally this will be <kernel_name>_1 unless a different name was specified.

• <SLR_NUM> is the SLR number to assign the CU to. For example, SLR0, SLR1.

For example, to assign CU vadd_2 to SLR2, and CU fft_1 to SLR1, use the following:

v++ --link --connectivity.slr vadd_2:SLR2 --connectivity.slr fft_1:SLR1

TIP: This option can be specified in a configuration file under the [connectivity]  section head using
the following format:

[connectivity]
slr=vadd_2:SLR2
slr=fft_1:SLR1

--connectivity.sp

--connectivity.sp <arg>

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 354Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=354

Use this option to specify the assignment of kernel interfaces to system ports within the
platform. A primary use case for this option is to connect kernel ports to specific memory
resources. A separate --connectivity.sp option is required to map each interface of a kernel
to a particular memory resource. Any kernel interface not explicitly mapped to a memory
resource through the --connectivity.sp option will be automatically connected to an
available memory resource during the build process.

Valid values include:

<cu_name>.<kernel_interface_name>:<sptag[min:max]>

Where:

• <cu_name> is the name of the compute unit as specified in the --connectivity.nk
option. Generally this will be <kernel_name>_1 unless a different name was specified.

• <kernel_interface_name> is the name of the function argument for the kernel, or
compute unit port.

• <sptag> represents a system port tag, such as for memory controller interface names from
the target platform. Valid <sptag> names include DDR, PLRAM, and HBM.

• [min:max] enables the use of a range of memory, such as DDR[0:2]. A single index is also
supported: DDR[2].

TIP: The supported <sptag>  and range of memory resources for a target platform can be obtained using
the platforminfo  command. Refer to platforminfo Utility for more information.

The following example maps the input argument (A) for the specified CU of the VADD kernel to
DDR[0:3], input argument (B) to HBM[0:31], and writes the output argument (C) to PLRAM[2]:

v++ --link --connectivity.sp vadd_1.A:DDR[0:3] --connectivity.sp
vadd_1.B:HBM[0:31] \
--connectivity.sp vadd_1.C:PLRAM[2]

TIP: This option can be specified in a configuration file under the [connectivity]  section head using
the following format:

[connectivity]
sp=vadd_1.A:DDR[0:3]
sp=vadd_1.B:HBM[0:31]
sp=vadd_1.C:PLRAM[2]

--connectivity.sc

--connectivity.sc <arg>

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 355Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=355

Create a streaming connection between two compute units through their AXI4-Stream
interfaces. Use a separate --connectivity.sc command for each streaming interface
connection. The order of connection must be from a streaming output port of the first kernel to a
streaming input port of the second kernel. Valid values include:

<cu_name>.<streaming_output_port>:<cu_name>.<streaming_input_port>[:<fifo_de
pth>]

Where:

• <cu_name> is the compute unit name specified in the --connectivity.nk option.
Generally this will be <kernel_name>_1 unless a different name was specified.

• <streaming_output_port>/<streaming_input_port> is the function argument for
the compute unit port that is declared as an AXI4-Stream.

• [:<fifo_depth>] inserts a FIFO of the specified depth between the two streaming ports
to prevent stalls. The value is specified as an integer.

For example, to connect the AXI4-Stream port s_out of the compute unit mem_read_1 to
AXI4-Stream port s_in of the compute unit increment_1, use the following:

--connectivity.sc mem_read_1.s_out:increment_1.s_in

TIP: This option can be specified in a configuration file under the [connectivity]  section head using
the following format:

[connectivity]
sc=mem_read_1.s_out:increment_1.s_in

The inclusion of the optional <fifo_depth> value lets the v++ linker add a FIFO between the two
kernels to help prevent stalls. This will use BRAM resources from the device when specified, but
eliminates the need to update the HLS kernel to contain FIFOs. The tool will also instantiate a
Clock Converter (CDC) or Datawidth Converter (DWC) IP if the connections have different
clocks, or different bus widths.

--hls Options
The --hls.XXX options described below are used to specify options for the Vitis HLS synthesis
process invoked during kernel compilation.

--hls.clock

--hls.clock <arg>

Specifies a frequency in Hz at which the listed kernel(s) should be compiled by Vitis HLS.

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 356Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=356

Where <arg> is specified as:
<frequency_in_Hz>:<cu_name1>,<cu_name2>,..,<cu_nameN>

• <frequency_in_Hz>: Defines the kernel frequency specified in Hz.

• <cu_name1>,<cu_name2>,...: Defines a list of kernels or kernel instances (CUs) to be
compiled at the specified target frequency.

For example:

v++ -c --hls.clock 300000000:mmult,mmadd --hls.clock 100000000:fifo_1

TIP: This option can be specified in a configuration file under the [hls] section head using the following
format:

[hls]
clock=300000000:mmult,mmadd
clock=100000000:fifo_1

--hls.export_mode

--hls.export_mode

Specifies an export mode from HLS with the path to an exported file. The value is specified as
<file_type>:<file_path>.

Where <file_type> can only be specified as xo for Xilinx object file.

For example:

v++ --hls.export_mode xo:./hls_kernel.xo

TIP: This option can be specified in a configuration file under the [hls]  section head using the following
format:

[hls]
export_mode=xo:./hls_kernel.xo

--hls.export_project

--hls.export_project

Specifies a directory where the HLS project setup script is exported.

For example:

v++ --hls.export_project ./hls_export

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 357Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=357

TIP: This option can be specified in a configuration file under the [hls]  section head using the following
format:

[hls]
export_project=./hls_export

--hls.max_memory_ports

--hls.max_memory_ports <arg>

Indicates that a separate AXI interface port should be created for each argument of a kernel. If
not enabled, the compiler creates a single AXI interface combining all kernel ports of the same
type. Valid values include all kernels, or specify a <kernel_name>.

This option is valid only for OpenCL kernels.

For example:

v++ --hls.max_memory_ports vadd

TIP: This option can be specified in a configuration file under the [hls]  section head using the following
format:

[hls]
max_memory_ports=vadd:vadd_1

--hls.memory_port_data_width

--hls.memory_port_data_width <arg>

Sets the memory port data width to the specified <number> for all kernels, or for a given
<kernel name>. Valid values include <number> or <kernel_name>:<number>.

Valid for OpenCL kernels.

For example:

v++ --hls.memory_port_data_width 256

TIP: This option can be specified in a configuration file under the [hls]  section head using the following
format:

[hls]
memory_port_data_width=256

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 358Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=358

--linkhook Options
The --linkhook.XXX options described below are used to specify Tcl scripts to run at specific
points during the Vitis linking process.

--linkhook.custom

--linkhook.custom <arg>

Where <arg> is specified as <step name, path to script file>.

Specify a Tcl script to execute at a factory predefined point in an internal step. The path to
specify the script can be an absolute path, or partial path relative to the build directory.

For example:

v++ -l --linkhook.custom step,runScript.tcl

-linkhook.do_first

--linkhook.do_first <arg>

Where <arg> is specified as <step name, path to script file>.

Specify a Tcl script to execute as a precondition to the given step name. The path to specify the
script can be an absolute path, or partial path relative to the build directory.

For example:

v++ -l --linkhook.do_first step,runScript.tcl

-linkhook.do_last

--linkhook.do_last <arg>

Where <arg> is specified as <step name, path to script file>.

Specify a Tcl script to execute immediately after the given step completes. The path to specify
the script can be an absolute path, or partial path relative to the build directory.

For example:

v++ -l --linkhook.do_last step,runScript.tcl

-linkhook.list_steps

--linkhook.list_steps

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 359Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=359

List run steps that support script hooks for a given target (use with --target). Also lists custom
factory defined hooks by name.

For example:

v++ -l --linkhook.list_steps

--package Options
Introduction

The v++ -package, or -p step, packages the final product at the end of the v++ compile and
link build process.

Some limitations of the --package command include:

• v++ -p cannot be used with non-extensible ("fixed") platforms as found in the bare metal
design flow.

The various options of --package include the following:

--package.bl31_elf

--package.bl31_elf <arg>

Where <arg> specifies the absolute or relative path to Arm trusted FW ELF that will execute on
A72 #0 core.

For example:

v++ -l --package.bl31_elf ./arm_trusted.elf

--package.boot_mode

 --package.boot_mode <arg>

Where <arg> specifies <ospi | qspi | sd> Boot mode used for running the application in
emulation or on hardware.

For example:

v++ -l --package.boot_mode sd

--package.domain

--package.domain <arg>

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 360Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=360

Where <arg> specifies a domain name.

For example:

v++ -l --package.domain xrt

--package.dtb

--package.dtb <arg>

Where <arg> specifies the absolute or relative path to device tree binary (DTB) used for loading
Linux on the APU.

For example:

v++ -l --package.dtb ./device_tree.image

--package.image_format

--package.image_format <arg>

Where <arg> specifies <ext4 | fat32> output image file format.

• ext4: Linux file system

• fat32: Windows file system

IMPORTANT! EXT4 format is not supported on Windows.

For example:

v++ -l --package.image_format fat32

--package.kernel_image

--package.kernel_image <arg>

Where <arg> specifies the absolute or relative path to a Linux kernel image file. Overrides the
existing image available in the platform. The platform image file is available for download from
Xilinx.com. Refer to the Vitis Software Platform Installation for more information.

For example:

v++ -l --package.kernel_image ./kernel_image

--package.no_image

--package.no_image

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 361Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=361

Bypass SD card image creation. Valid for --package.boot_mode sd.

--package.out_dir

--package.out_dir <arg>

Where <arg> specifies the absolute or relative path to the output directory of the --package
command.

For example:

v++ -l --package.out_dir ./out_dir

--package.ps_debug_port

--package.ps_debug_port <arg>

Where <arg> specifies the TCP port where emulator will listen for incoming connections from
the debugger to debug PS cores.

For example:

v++ -l --package.debug_port 3200

--package.ps_elf

--package.ps_elf <arg>

Where <arg> specifies <ps.elf,core>.

• ps.elf: Specifies the ELF file for the PS core.

• core: Indicates the PS core it should run on.

For example:

v++ -l --package.ps_elf a72_0.elf,a72-0

--package.rootfs

--package.rootfs <arg>

Where <arg> specifies the absolute or relative path to a processed Linux root file system file.
The platform RootFS file is available for download from Xilinx.com. Refer to the Vitis Software
Platform Installation for more information.

For example:

v++ -l --package.rootfs ./rootfs.ext4

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 362Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=362

--package.sd_dir

--package.sd_dir <arg>

Where <arg> specifies a folder to package into the sd_card directory/image.

For example:

v++ -l --package.sd_dir ./test_data

--package.sd_file

--package.sd_file <arg>

Where <arg> specifies an ELF or other data file to package into the sd_card directory/image.
This option can be used repeatedly to specify multiple files to add to the sd_card.

For example:

v++ -l --package.sd_file ./arm_trusted.elf

--package.uboot

--package.uboot <arg>

Where <arg> specifies a path to U-boot ELF file which overrides a platform U-boot.

For example:

v++ -l --package.uboot ./uboot.elf

--vivado Options
The –-vivado.XXX options are paired with parameters and properties to configure the Vivado
tools. For instance, you can configure optimization, placement, and timing, or specify which
reports to output.

IMPORTANT! Familiarity with the Vivado Design Suite is required to make the best use of these options.
See the Vivado Design Suite User Guide: Implementation (UG904) for more information.

--vivado.param

--vivado.param <arg>

Specifies parameters for the Vivado Design Suite to be used during synthesis and
implementation of the FPGA binary (xclbin).

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 363Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug904-vivado-implementation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=363

--vivado.prop

--vivado.prop <arg>

Specifies properties for the Vivado Design Suite to be used during synthesis and implementation
of the FPGA binary (xclbin).

Table 34: Prop Options

Property Name Valid Values Description
vivado.prop
<object_type>.<object_name>.<prop_name>

Type: Various This allows you to specify any property used in
the Vivado hardware compilation flow.
<object_type> is run|fileset|file|
project.
The <object_name> and <prop_name> values
are described in Vivado Design Suite Properties
Reference Guide (UG912).
Examples:

vivado.prop run.impl_1.
{STEPS.PLACE_DESIGN.ARGS.MORE
OPTIONS}={-fanout_opt}

vivado.prop fileset.
current.top=foo

If <object_type> is set to file, current is
not supported.
If <object type> is set to run, the special
value of __KERNEL__ can be used to specify
run optimization settings for ALL kernels,
instead of the need to specify them one by
one.

For example, from the command line:

v++ --link --vivado.prop run.impl_1.STEPS.PHYS_OPT_DESIGN.IS_ENABLED=true
--vivado.prop run.impl_1.STEPS.PHYS_OPT_DESIGN.ARGS.DIRECTIVE=Explore
--vivado.prop run.impl_1.STEPS.PLACE_DESIGN.TCL.PRE=/…/xxx.tcl

The example above enables the optional PHYS_OPT_DESIGN step as part of the Vivado
implementation process, sets the Explore directive for that step, and specifies a Tcl script to
run before the PLACE_DESIGN step.

TIP: As described in Managing FPGA Synthesis and Implementation Results in the Vivado Tool, each step
in the Vivado synthesis and implementation process can have a Tcl pre script to run before the step, and a
Tcl post script to run after the step. This lets you customize the build process by inserting pre-processing or
post-processing Tcl commands around the different steps. These scripts can be specified as shown in the
example above.

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 364Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug912-vivado-properties.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=364

These options can also be specified in a configuration file under the [vivado] section head
using the following format:

[vivado]
prop=run.impl_1.STEPS.PHYS_OPT_DESIGN.IS_ENABLED=true
prop=run.impl_1.STEPS.PHYS_OPT_DESIGN.ARGS.DIRECTIVE=Explore
prop=run.impl_1.STEPS.PLACE_DESIGN.TCL.PRE=/…/xxx.tcl

IMPORTANT! Some Vivado properties have spaces in their name, such as MORE OPTIONS, and Tcl
syntax requires these properties to be enclosed in braces, {}. However, the placement of the braces in the
--vivado  options is important. You must surround the complete property name with braces, rather than
just a portion of it. For instance, the correct placement would be:

--vivado_prop run.impl_1.{STEPS.PLACE_DESIGN.ARGS.MORE OPTIONS}={-
fanout_opt}

While the following would result in an error during the build process:

--vivado_prop run.impl_1.STEPS.PLACE_DESIGN.ARGS.{MORE OPTIONS}={-
fanout_opt}

Vitis Compiler Configuration File
A configuration file can also be used to specify the Vitis compiler options. A configuration file
provides an organized way of passing options to the compiler by grouping similar switches
together, and minimizing the length of the v++ command line. Some of the features that can be
controlled through config file entries include:

• HLS options to configure kernel compilation

• Connectivity directives for system linking such as the number of kernels to instantiate or the
assignment of kernel ports to global memory

• Directives for the Vivado Design Suite to manage hardware synthesis and implementation.

In general, any v++ command option can be specified in a configuration file. However, the
configuration file supports defining sections containing groups of related commands to help
manage build options and strategies. The following table lists the defined sections.

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 365Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=365

Table 35: Section Tags of the Configuration File

Section Name Compiler/Linker Description
[hls] compiler HLS directives --hls Options:

• clock
• export_project
• export_mode
• max_memory_ports
• memory_port_data_width

[clock] compiler Clock commands --clock Options:
• defaultFreqHz
• defaultID
• freqHz
• id

[connectivity] linker --connectivity Options:
• nk
• sp
• stream_connect
• slr
• connect

[vivado] linker --vivado Options:
• param
• prop

[advanced] either --advanced Options:
• param
• prop
• misc

TIP: Comments can be added to the configuration file by starting the line with a "#". The end of a section is
specified by an empty line at the end of the section.

Because the v++ command supports multiple config files on a single v++ command line, you can
partition your configuration files into related options that define compilation and linking
strategies or Vivado implementation strategies, and apply multiple config files during the build
process.

Configuration files are optional. There are no naming restrictions on the files and the number of
configuration files can be zero or more. All v++ options can be put in a single configuration file if
desired. However, grouping related switches into separate files can help you organize your build
strategy. For example, group [connectivity] related switches in one file, and [Vivado]
options into a separate file.

The configuration file is specified through the use of the v++ --config option as discussed in
the Vitis Compiler General Options. An example of the --config option follows:

v++ --config ../src/connectivity.cfg

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 366Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=366

Switches are read in the order they are encountered. If the same switch is repeated with
conflicting information, the first switch read is used. The order of precedence for switches is as
follows, where item one takes highest precedence:

1. Command line switches.

2. Config files (on command line) from left-to-right.

3. Within a config file, precedence is from top-to-bottom.

Using the Message Rule File
The v++ command executes various Xilinx tools during kernel compilation and linking. These
tools generate many messages that provide build status to you. These messages might or might
not be relevant to you depending on your focus and design phase. The Message Rule file (.mrf)
can be used to better manage these messages. It provides commands to promote important
messages to the terminal or suppress unimportant ones. This helps you better understand the
kernel build result and explore methods to optimize the kernel.

The Message Rule file is a text file consisting of comments and supported commands. Only one
command is allowed on each line.

Comment

Any line with “#” as the first non-white space character is a comment.

Supported Commands

By default, v++ recursively scans the entire working directory and promotes all error messages to
the v++ output. The promote and suppress commands below provide more control on the v+
+ output.

• promote: This command indicates that matching messages should be promoted to the v++
output.

• suppress: This command indicates that matching messages should be suppressed or filtered
from the v++ output. Note that errors cannot be suppressed.

Enter only one command per line.

Command Options

The Message Rule file can have multiple promote and suppress commands. Each command
can have one and only one of the options below. The options are case-sensitive.

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 367Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=367

• -id [<message_id>]: All messages matching the specified message ID are promoted or
suppressed. The message ID is in format of nnn-mmm. As an example, the following is a
warning message from HLS. The message ID in this case is 204-68.

WARNING: [V++ 204-68] Unable to enforce a carried dependence constraint
(II = 1, distance = 1, offset = 1)
between bus request on port 'gmem'
(/matrix_multiply_cl_kernel/mmult1.cl:57) and bus request on port 'gmem'-
severity [severity_level]

For example, to suppress messages with message ID 204-68, specify the following:
suppress -id 204-68.

• -severity [<severity_level>]: The following are valid values for the severity level. All
messages matching the specified severity level will be promoted or suppressed.

○ info

○ warning

○ critical_warning

For example, to promote messages with severity of 'critical-warning', specify the following:
promote -severity critical_warning.

Precedence of Message Rules

The suppress rules take precedence over promote rules. If the same message ID or severity
level is passed to both promote and suppress commands in the Message Rule file, the
matching messages are suppressed and not displayed.

Example of Message Rule File

The following is an example of a valid Message Rule file:

promote all warning, critical warning
promote -severity warning
promote -severity critical_warning
suppress the critical warning message with id 19-2342
suppress -id 19-2342

Section V: Vitis Environment Reference Materials
Chapter 22: Vitis Compiler Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 368Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=368

Chapter 23

emconfigutil Utility
When running software or hardware emulation in the command line flow, it is necessary to
create an emulation configuration file, emconfig.json, used by the runtime library during
emulation. The emulation configuration file defines the device type and quantity of devices to
emulate for the specified platform. A single emconfig.json file can be used for both software
and hardware emulation.

Note: When running on real hardware, the runtime and drivers query the installed hardware to determine
the device type and quantity installed, along with the device characteristics.

To use the emconfigutil utility to automate the creation of the emulation file, specify the
target platform and additional options in the emconfigutil command line:

emconfigutil --platform <platform_name> [options]

At a minimum, you must specify the target platform through the -f or -–platform option to
generate the required emconfig.json file. The specified platform must be the same as
specified during the host and hardware builds.

The emconfigutil options are provided in the following table.

Table 36: emconfigutil Options

Option Valid Values Description
-f or --platform Target device Required. Defines the target device from the specified platform.

For a list of supported devices, refer to Supported Platforms.
--nd Any positive integer Optional. Specifies number of devices. The default is 1.
--od Valid directory Optional. Specifies the output directory. When running emulation,

the emconfig.json file must be in the same directory as the host
executable. The default is to write the output in the current
directory.

-s or --save-temps N/A Optional. Specifies that intermediate files are not deleted and
remain after the command is executed. The default is to remove
temporary files.

--xp Valid Xilinx parameters
and properties.

Optional. Specifies additional parameters and properties. For
example:

--xp prop:solution.platform_repo_paths=<xsa_path>

This example sets the search path for the target platforms.

-h or --help N/A Prints command help.

Section V: Vitis Environment Reference Materials
Chapter 23: emconfigutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 369Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=369

The emconfigutil command generates the emconfig.json configuration file in the output
directory or the current working directory.

TIP: When running emulation, the emconfig.json  file must be in the same directory as the host
executable.

The following example creates a configuration file targeting two xilinx_u200_qdma_201910_1
devices.

$emconfigutil --xilinx_u200_qdma_201910_1 --nd 2

Section V: Vitis Environment Reference Materials
Chapter 23: emconfigutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 370Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=370

Chapter 24

kernelinfo Utility
The kernelinfo utility extracts and displays information from .o files which can be used
during host code development. This information includes hardware function names, arguments,
offsets, and port data.

The following command options are available:

Table 37: kernalinfo Commands

Option Description
-h [--help] Print help message.
-x [--xo_path] <arg> Absolute path to O file including file name and .xo extension
-l [--log] <arg> By default, information is displayed on the screen. Otherwise, you can use the --

log option to output the information as a file.

-j [--json] Output the file in JSON format.
[input_file] XO file. Specify the XO file positionally or use the --xo_path option.

[output_file] Output from Xilinx OpenCL™ Compiler. Specify the output file positionally, or use
the --log option.

To run the kernelinfo utility, enter the following in a Linux terminal:

kernelinfo <filename.o>

The output is divided into three sections:

• Kernel Definitions

• Arguments

• Ports

The report generated by the following command is reviewed to help better understand the report
content. Note that the report is broken down into specific sections for better understandability.

kernelinfo krnl_vadd.o

Where krnl_vadd.o is a packaged kernel.

Section V: Vitis Environment Reference Materials
Chapter 24: kernelinfo Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 371Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=371

Kernel Definition
Reports high-level kernel definition information. Importantly, for the host code development, the
kernel name is given in the name field. In this example, the kernel name is krnl_vadd.

=== Kernel Definition ===
name: krnl_vadd
language: c
vlnv: xilinx.com:hls:krnl_vadd:1.0
preferredWorkGroupSizeMultiple: 1
workGroupSize: 1
debug: true
containsDebugDir: 1
sourceFile: krnl_vadd/cpu_sources/krnl_vadd.cpp

Arguments
Reports kernel function arguments.

In the following example, there are four arguments: a, b, c, and n_elements.

=== Arg ===
name: a
addressQualifier: 1
id: 0
port: M_AXI_GMEM
size: 0x8
offset: 0x10
hostOffset: 0x0
hostSize: 0x8
type: int*

=== Arg ===
name: b
addressQualifier: 1
id: 1
port: M_AXI_GMEM
size: 0x8
offset: 0x1C
hostOffset: 0x0
hostSize: 0x8
type: int*

=== Arg ===
name: c
addressQualifier: 1
id: 2
port: M_AXI_GMEM1
size: 0x8
offset: 0x28
hostOffset: 0x0
hostSize: 0x8
type: int*

Section V: Vitis Environment Reference Materials
Chapter 24: kernelinfo Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 372Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=372

=== Arg ===
name: n_elements
addressQualifier: 0
id: 3
port: S_AXI_CONTROL
size: 0x4
offset: 0x34
hostOffset: 0x0
hostSize: 0x4
type: int const

Ports
Reports the memory and control ports used by the kernel.

=== Port ===
name: M_AXI_GMEM
mode: master
range: 0xFFFFFFFF
dataWidth: 32
portType: addressable
base: 0x0

=== Port ===
name: M_AXI_GMEM1
mode: master
range: 0xFFFFFFFF
dataWidth: 32
portType: addressable
base: 0x0

=== Port ===
name: S_AXI_CONTROL
mode: slave
range: 0x1000
dataWidth: 32
portType: addressable
base: 0x0

Section V: Vitis Environment Reference Materials
Chapter 24: kernelinfo Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 373Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=373

Chapter 25

launch_emulator Utility
For embedded platforms that have an Arm sub-system, the Vitis tool uses QEMU to emulate the
PS sub-system. The QEMU processes must be run along with the RTL simulator process to
emulate the entire system in hardware emulation. The launch_emulator is a utility which
launches QEMU and manages the synchronization of the PL simulator processes. It launches
QEMU and the simulation process with provided arguments. The Vitis IDE also calls this
command when starting and stopping the emulator.

For embedded platforms, the --package Options command generates scripts,
launch_hw_emu.sh, or launch_sw_emu.sh to call the launch_emulator command with
the required arguments based on the platform and the target application.

You can pass additional arguments to the launch_emulator utility from the command line
when using the launch_hw_emu.sh or launch_sw_emu.sh wrapper scripts. Simply append
the option to the command line when running the script. This allows you to customize the
launch_emulator utility as needed to support your specific platform or application. The
following table shows the list of available options.

Table 38: launch_emulator Utility Options

Option Accepted Value Description
-add-env "name=value" Specifies environment variables before launching

qemu/pmc/simulator
-cardano $XILINX_VITIS/cardano Sets the value of XILINX_CARDANO
-config-file Configuration file (ini format) Configuration file that specifies the environment

setup for the command
-device-family 7Series | UltraScale | UltraScale+ Required to specify the device family for the platform.

This is auto passed by the v++ package generates
scripts launch_hw_emu.sh or launch_sw_emu.sh
based on the target chosen.
Need to be passed explicitly for direct usage of
launch_emulator tool.

-enable-debug N/A Debug mode opening two different XTERMs for QEMU
and PL. This is very useful for the batch mode users to
understand the flow and handshake between the
QEMU and PL process.

-forward-port <target> <host> Forwards TCP port from target to host
-gdb-port Port number QEMU waits for GDB connection on <port>
-help N/A Prints help message
-kill <pid> Kills a specified emulator process

Section V: Vitis Environment Reference Materials
Chapter 25: launch_emulator Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 374Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=374

Table 38: launch_emulator Utility Options (cont'd)

Option Accepted Value Description
-no-reboot N/A Exit QEMU instead of rebooting. Used to exit

gracefully from QEMU by executing command reboot
-f at the embedded Linux prompt.

-pid-file File name Write process ID to <file> for later use with -kill.
Used by the Vitis software platform to kill once
emulation is successful.

-pl-sim-args Arguments to simulator These arguments gets appended to simulator
command line. Alternative to pm-sim-args-file.

-pl-sim-args-file Simulation arguments file name Any options to simulator toll can be given in this file
-pl-sim-dir Simulation directory Start the Programmable Logic Simulator by launching

the scripts from this directory. This is auto passed in
the v++ package generated script. The tool expects a
file called simulate.sh in the specified directory and
will execute it to launch the PL simulator (eg. XSIM)

-pl-sim-script Simulation script location Advanced users can have one direct script to launch
simulation (for example, Vivado users).
When this option is given, run the script, other
options are of no value.

-pmc-args Arguments to PMC The MicroBlaze QEMU is run to emulate the PMC.
Instead of writing into a file called pmc_args.txt,
you can directly provide all the arguments that need
to be appended to the PMC command line. This is an
alternative to -pmc-args-file.

-pmc-args-file PMC QEMU arguments file name Any options to be passed to PMU/PMC can be given in
this file. This is specific format where you fetch the
base file from the platform chosen. This is auto
passed in the v++ package generated script.

-qemu-args Arguments to QEMU Instead of writing into a file called qemu_args.txt,
you can directly provide all the arguments that needs
to be appended to the QEMU command line. This is an
alternative to qemu-args-file.

-qemu-args-file PS QEMU Arguments file name Any options to be passed to QEMU can be given in
this file. This is specific format where you fetch the
base file from the platform chosen. This is auto
passed in the v++ package generated script.

-qspi-high-image Specify QSPI high image file The image file which will be passed as a QEMU
argument in the form of boot mode. This is auto
passed in the V++ package generated script.
Required only when DUAL QSPI mode is used.

-qspi-image Specify qspi.bin The image file is passed as a QEMU argument in the
form of boot mode. This is auto passed in the V++
package generated script.
Required only when you opt for QSPI mode.

-qspi-low-image Specify QSPI low image file The image file is passed as a QEMU argument in the
form of boot mode. This is auto passed in the V++
package generated script.
Required only when DUAL QSPI mode is used.

-sd-card-image Specify sd_card.img The image file is passed as a QEMU argument in the
form of boot mode. This is auto passed in the V++
package generated script.
Required only when SD mode is used.

Section V: Vitis Environment Reference Materials
Chapter 25: launch_emulator Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 375Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=375

Table 38: launch_emulator Utility Options (cont'd)

Option Accepted Value Description
-sim-gui N/A Starts the Programmable Logic Simulator in GUI to

debug the design
-t / -target sw_emu -or- hw_emu Specifies to run sw_emu or hw_emu.

Based on the target chosen in the v++, respective
script is generated by the v++ package.
For sw_emu target, launch_sw_emu.sh is generated
and for hw_emu target, launch_hw_emu.sh is
generated.

-timeout <n> Terminates emulation after <n> seconds
-user-post-sim-script Path to Tcl script required to be

done post simulation before quit
Create Tcl for any post operations into a Tcl file and
pass the Tcl script to this switch

-user-pre-sim-script Path to Tcl script For first run, launch_emulator in GUI mode and add
the signals that you want to observe.
Copies the commands from the Tcl console and save
into a Tcl script.
From the next run, pass the Tcl script in batch mode,
for example:
launch_emulator -user-pre-sim-script
<path_to_saved_tcl_script>

Only supports the Vivado simulator (xsim).
-vivado $XILINX_VIVADO Sets the VIVADO_LOC and is used by simulate.sh to

load simulation/c-model libraries

-xtlm-aximm-log N/A Even though you run the v++ with -g, you can view
only the waveform. However, logs are disabled by
default. At runtime, enable the log for AXI4 Memory
Map transactions using this switch.

-xtlm-axis-log N/A Even though you run the v++ with -g, you can view
only the waveform. However, logs are disabled by
default. At runtime, enable the log for AXI4-Stream
transactions using this switch.

TIP: For QEMU help, press Ctrl + A H while in the emulator.

Section V: Vitis Environment Reference Materials
Chapter 25: launch_emulator Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 376Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=376

Chapter 26

manage_ipcache Utility
To provide better performance during synthesis of kernels in your application designs, the Vitis
compiler uses an IP cache to store and reuse synthesis results. This lets the build process for
the .xclbin file avoid having to repeat synthesis for kernels and CUs that have not changed.
The IP cache stores the synthesis results and applies them for unchanged kernels in the design.

By default, the IP cache is stored inside the Vitis IDE workspace for a project, or at the level of
your builds when running v++ from the command line. You can customize the location for the IP
cache using --remote_ip_cache to specify a new location, or disable the use of the IP cache
using --no_ip_cache. See Vitis Compiler General Options for information on these options.

The manage_ipcache utility is a standalone utility to help you manage the contents of your IP
cache repository. It lets you report statistics on the IP cache repository and remove entries based
on a variety of criteria.

Table 39: manage_ipcache Options

Option Description
-c | --cache Required. Specifies the IP Cache directory to work on.
-d | --disk_space <size> Delete all but the most recently used entries that fit in the disk space specified in MB.
-h | --help Prints help for the manage_ipcache command.

-k | --keep_top <N> Delete all but the top N most recently used entries (N is an integer).
-o | --outfile <file> Report stats for the IP cache to the specified file.
-p | --purge Delete ALL cache entries.
-r | --report Report stats for the IP cache to stdout.
-u | --unused Delete cache entries that have never been used (no cache hits).

The following example reports on the entries of the specified IP cache:

manage_ipcache --cache ./ip_cache --report

The manage_ipcache command returns 0 if successful, or returns -1 if an error occurs.

Section V: Vitis Environment Reference Materials
Chapter 26: manage_ipcache Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 377Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=377

Chapter 27

package_xo Command
Syntax

package_xo -kernel_name <arg> [-force] [-kernel_xml <arg>] [-design_xml
<arg>]
 [-ip_directory <arg>] [-parent_ip_directory <arg>]
 [-kernel_files <args>] [-kernel_xml_args <args>]
 [-kernel_xml_pipes <args>] [-kernel_xml_connections <args>]
 -xo_path <arg> [-quiet] [-verbose]

Description

The package_xo command is a Tcl command within the Vivado Design Suite. Kernels written in
RTL are compiled in the Vivado tool using the package_xo command line utility which
generates a Xilinx object file (.xo) which can subsequently used by the v++ command, during
the linking stage.

Table 40: Arguments

Argument Description
-kernel_name <arg> Required. Specifies the name of the RTL kernel.
-force (Optional) Overwrite an existing .xo file if one exists.

-kernel_xml <arg> (Optional) Specify the path to an existing kernel XML file. The Vivado tool
will create a kernel.xml file for the .xo file if one is not specified.

-design_xml <arg> (Optional) Specify the path to an existing design XML file
-ip_directory <arg> (Optional) Specify the path to the kernel IP directory.
-parent_ip_directory (Optional) If the kernel IP directory specified contains multiple IPs,

specify a directory path to the parent IP where its component.xml is
located directly below.

-kernel_files (Optional) Kernel file name(s).
-kernel_xml_args <args> (Optional) Generate the kernel.xml with the specified function

arguments. Each argument value should use the following format:

{name:addressQualifier:id:port:size:offset:type:memSize}

Note: memSize is optional.

-kernel_xml_pipes <args> (Optional) Generate the kernel.xml with the specified pipe(s). Each
pipe value use the following format:

{name:width:depth}

Section V: Vitis Environment Reference Materials
Chapter 27: package_xo Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 378Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=378

Table 40: Arguments (cont'd)

Argument Description
-kernel_xml_connections <args> (Optional) Generate the kernel.xml file with the specified connections.

Each connection value should use the following format:

{srcInst:srcPort:dstInst:dstPort}

-xo_path <arg> (Required) Specifies the path and file name of the compiled object (.xo)
file.

-quiet (Optional) Execute the command quietly, returning no messages from
the command. The command also returns TCL_OK regardless of any
errors encountered during execution.

Note: Any errors encountered on the command-line, while launching the
command, will be returned. Only errors occurring inside the command
will be trapped.

-verbose (Optional) Temporarily override any message limits and return all
messages from this command.

Note: Message limits can be defined with the set_msg_config
command.

Examples

The following example creates the specified .xo file containing an RTL kernel of the specified
name, and creates the kernel.xml file because one has not been specified:

package_xo -xo_path Vadd_A_B.xo -kernel_name Vadd_A_B -ip_directory ./ip

The following example creates the .xo file using the specified kernel.xml file:

package_xo -xo_path Vadd_A_B.xo -kernel_name Vadd_A_B -kernel_xml
kernel.xml -ip_directory ./ip

Section V: Vitis Environment Reference Materials
Chapter 27: package_xo Command

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 379Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=379

Chapter 28

platforminfo Utility
The platforminfo command line utility reports platform meta-data including information on
interface, clock, valid SLRs and allocated resources, and memory in a structured format. This
information can be referenced when allocating kernels to SLRs or memory resources for instance.

The following command options are available to use with platforminfo:

Table 41: platforminfo Commands

Option Description
-h [--help] Print help message and exit.
-k [--keys] Get keys for a given platform. Returns a list of JSON paths.
-l [--list] List platforms. Searches the user repo paths $PLATFORM_REPO_PATHS and then

the install locations to find .xpfm files.

-e [--extended] List platforms with extended information. Use with '--list'.
-d [--hw] <arg> Hardware platform definition (*.dsa) on which to operate. The value must be a

full path, including file name and .dsa extension.

-s [--sw] <arg> Software platform definition (*.spfm) on which to operate. The value must be a
full path, including file name and .spfm extension.

-p [--platform] <arg> Xilinx® platform definition (*.xpfm) on which to operate. The value for --
platform can be a full path including file name and .xpfm extension, as shown
in example 1 below. If supplying a file name and .xpfm extension without a path,
this utility will search only the current working directory. You can also specify just
the base name for the platform. When the value is a base name, this utility will
search the $PLATFORM_REPO_PATHS, and the install locations, to find a
corresponding .xpfm file, as shown in example 2 below.

Example 1: --platform /opt/xilinx/platforms/
xilinx_u200_xdma_201830_1.xpfm

Example 2: --platform xilinx_u200_xdma_201830_1

-o [--output] <arg> Specify an output file to write the results to. By default the output is returned to
the terminal (stdout).

Section V: Vitis Environment Reference Materials
Chapter 28: platforminfo Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 380Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=380

Table 41: platforminfo Commands (cont'd)

Option Description
-j [--json] <arg> Specify JSON format for the generated output. When used with no value, the

platforminfo utility prints the entire platform in JSON format. This option also
accepts an argument that specifies a JSON path, as returned by the -k option.
The JSON path, when valid, is used to fetch a JSON subtree, list, or value.

Example 1:
platforminfo --json="hardwarePlatform" --platform <platform
base name>

Example 2: Specify the index when referring to an item in a
list.
platforminfo --json="hardwarePlatform.devices[0].name" --
platform <platform base name>

Example 3: When using the short option form (-j), the value
must follow immediately.
platforminfo -j"hardwarePlatform.systemClocks[]" -p <platform
base name>

-v [--verbose] Specify more detailed information output. The default behavior is to produce a
human-readable report containing the most important characteristics of the
specified platform.

Note: Except when using the --help or --list options, a platform must be specified. You can specify
the platform using the --platform option, or using either --hw, --sw. You can also simply insert the
platform name or full path into the command line positionally.

To understand the generated report, condensed output logs, based on the following command
are reviewed. Note that the report is broken down into specific sections for better
understandability.

platforminfo -p $PLATFORM_REPO_PATHS/xilinx_u200_xdma_201830_1.xpfm

TIP: See Platforminfo for xilinx_zcu104_base_202010_1 for an example of embedded processor
platforms.

Basic Platform Information
Platform information and high-level description are reported.

Platform: xdma
File: /opt/xilinx/platforms/xilinx_u200_xdma_201830_1/
 xilinx_u200_xdma_201830_1.xpfm
Description: This platform targets the Alveo U200 Data Center Accelerator
 Card. This high-performance acceleration platform features
 up to four channels of DDR4-2400 SDRAM which are
 instantiated as required by the user kernels for high fabric
 resource availability, and Xilinx DMA Subsystem for PCI
 Express with PCIe Gen3 x16 connectivity.
Platform Type: Vitis

Section V: Vitis Environment Reference Materials
Chapter 28: platforminfo Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 381Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=381

Hardware Platform Information
General information on the hardware platform is reported. For the Software Emulation and
Hardware Emulation field, a "1" indicates this platform is suitable for these configurations. The
Maximum Number of Compute Units field gives the maximum number of compute units
allowable in this platform.

Vendor: xilinx
Board: U200 (xdma)
Name: xdma
Version: 201830.1
Generated Version: 2018.3
Software Emulation: 1
Hardware Emulation: 1
FPGA Family: virtexuplus
FPGA Device: xcu200
Board Vendor: xilinx.com
Board Name: xilinx.com:au200:1.0
Board Part: xcu200-fsgd2104-2-e
Maximum Number of Compute Units: 60

Interface Information
The following shows the reported PCIe interface information.

 Interface Name: PCIe
 Interface Type: gen3x16
 PCIe Vendor Id: 0x10EE
 PCIe Device Id: 0x5000
 PCIe Subsystem Id: 0x000E

Clock Information
Reports the maximum kernel clock frequencies available. The Clock Index is the reference used in
the --kernel_frequency v++ directive when overriding the default value.

 Default Clock Index: 0
 Clock Index: 1
 Frequency: 500.000000
 Clock Index: 0
 Frequency: 300.000000

Section V: Vitis Environment Reference Materials
Chapter 28: platforminfo Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 382Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=382

Valid SLRs
Reports the valid SLRs in the platform.

 SLR0, SLR1, SLR2

Resource Availability
The total available resources and resources available per SLR are reported. This information can
be used to assess applicability of the platform for the design and help guide allocation of
compute unit to available SLRs.

 Total...
 LUTs: 1051996
 FFs: 2197301
 BRAMs: 1896
 DSPs: 6833
 Per SLR...
 SLR0:
 LUTs: 354825
 FFs: 723370
 BRAMs: 638
 DSPs: 2265
 SLR1:
 LUTs: 159108
 FFs: 329166
 BRAMs: 326
 DSPs: 1317
 SLR2:
 LUTs: 354966
 FFs: 723413
 BRAMs: 638
 DSPs: 2265

Memory Information
Reports the available DDR and PLRAM memory connections per SLR as shown in the example
output below.

 Type: ddr4
 Bus SP Tag: DDR
 Segment Index: 0
 Consumption: automatic
 SP Tag: bank0
 SLR: SLR0
 Max Masters: 15
 Segment Index: 1

Section V: Vitis Environment Reference Materials
Chapter 28: platforminfo Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 383Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=383

 Consumption: default
 SP Tag: bank1
 SLR: SLR1
 Max Masters: 15
 Segment Index: 2
 Consumption: automatic
 SP Tag: bank2
 SLR: SLR1
 Max Masters: 15
 Segment Index: 3
 Consumption: automatic
 SP Tag: bank3
 SLR: SLR2
 Max Masters: 15
 Bus SP Tag: PLRAM
 Segment Index: 0
 Consumption: explicit
 SLR: SLR0
 Max Masters: 15
 Segment Index: 1
 Consumption: explicit
 SLR: SLR1
 Max Masters: 15
 Segment Index: 2
 Consumption: explicit
 SLR: SLR2
 Max Masters: 15

The Bus SP Tag heading can be DDR or PLRAM and gives associated information below.

The Segment Index field is used in association with the SP Tag to generate the associated
memory resource index as shown below.

Bus SP Tag[Segment Index]

For example, if Segment Index is 0, then the associated DDR resource index would be
DDR[0].

This memory index is used when specifying memory resources in the v++ command as shown
below:

v++ … --connectivity.sp vadd.m_axi_gmem:DDR[3]

There can be more than one Segment Index associated with an SLR. For instance, in the
output above, SLR1 has both Segment Index 1 and 2.

The Consumption field indicates how a memory resource is used when building the design:

• default: If the --connectivity.sp directive is not specified, it uses this memory resource
by default during v++ build. For example in the report below, DDR with Segment Index 1 is
used by default.

Section V: Vitis Environment Reference Materials
Chapter 28: platforminfo Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 384Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=384

• automatic: When the maximum number of memory interfaces have been used under
Consumption: default have been fully applied, then the interfaces under automatic is
used. The maximum number of interfaces per memory resource are given in the Max Masters
field.

• explicit: For PLRAM, consumption is set to explicit which indicates this memory resource
is only used when explicitly indicated through the v++ command line.

Feature ROM Information
The feature ROM information provides build related information on ROM platform and can be
requested by Xilinx Support when debugging system issues.

 ROM Major Version: 10
 ROM Minor Version: 1
 ROM Vivado Build ID: 2388429
 ROM DDR Channel Count: 5
 ROM DDR Channel Size: 16
 ROM Feature Bit Map: 655885
 ROM UUID: 00194bb3-707b-49c4-911e-a66899000b6b
 ROM CDMA Base Address 0: 620756992
 ROM CDMA Base Address 1: 0
 ROM CDMA Base Address 2: 0
 ROM CDMA Base Address 3: 0

Software Platform Information
Although software platform information is reported, it is only useful for users that have an OS
running on the device, and not applicable to users that use a host machine.

Number of Runtimes: 1
Linux root file system path: tbd
Default System Configuration: config0_0
System Configurations:
 System Config Name: config0_0
 System Config Description: config0_0 Linux OS on x86_0
 System Config Default Processor Group: x86_0
 System Config Default Boot Image:
 System Config Is QEMU Supported: 0
 System Config Processor Groups:
 Processor Group Name: x86_0
 Processor Group CPU Type: x86
 Processor Group OS Name: Linux OS
 System Config Boot Images:
Supported Runtimes:
 Runtime: OpenCL

Section V: Vitis Environment Reference Materials
Chapter 28: platforminfo Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 385Send Feedback

https://www.xilinx.com/support.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=385

Platforminfo for xilinx_zcu104_base_202010_1
Use the following command to return the platforminfo for the xilinx_zcu104_base_202010_1
platform:

platforminfo -p xilinx_zcu104_base_202010_1

The results returned are as follows:

==========================
Basic Platform Information
==========================
Platform: xilinx_zcu104_base_202010_1
File: /platforms/xilinx_zcu104_base_202010_1/
xilinx_zcu104_base_202010_1.xpfm
Description:
A basic static platform targeting the ZCU104 evaluation board, which
includes 2GB DDR4, GEM, USB, SDIO interface and UART of the Processing
System. It reserves most of the PL resources for user to add acceleration
kernels

=====================================
Hardware Platform (Shell) Information
=====================================
Vendor: xilinx
Board: zcu104_base
Name: zcu104_base
Version: 1.0
Generated Version: 2020.1
Software Emulation: 1
Hardware Emulation: 0
FPGA Family: zynquplus
FPGA Device: xczu7ev
Board Vendor: xilinx.com
Board Name: xilinx.com:zcu104:1.1
Board Part: xczu7ev-ffvc1156-2-e
Maximum Number of Compute Units: 60

=================
Clock Information
=================
 Default Clock Index: 0
 Clock Index: 0
 Frequency: 150.000000
 Clock Index: 1
 Frequency: 300.000000
 Clock Index: 2
 Frequency: 75.000000
 Clock Index: 3
 Frequency: 100.000000
 Clock Index: 4
 Frequency: 200.000000
 Clock Index: 5
 Frequency: 400.000000
 Clock Index: 6
 Frequency: 600.000000

Section V: Vitis Environment Reference Materials
Chapter 28: platforminfo Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 386Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=386

==================
Memory Information
==================
 Bus SP Tag: HP0
 Bus SP Tag: HP1
 Bus SP Tag: HP2
 Bus SP Tag: HP3
 Bus SP Tag: HPC0
 Bus SP Tag: HPC1
=======================
Feature ROM Information
=======================

=============================
Software Platform Information
=============================
Number of Runtimes: 1
Default System Configuration: xilinx_zcu104_base_202010_1
System Configurations:
 System Config Name: xilinx_zcu104_base_202010_1
 System Config Description: xilinx_zcu104_base_202010_1
 System Config Default Processor Group: xrt
 System Config Default Boot Image: standard
 System Config Is QEMU Supported: 1
 System Config Processor Groups:
 Processor Group Name: xrt
 Processor Group CPU Type: cortex-a53
 Processor Group OS Name: linux
 System Config Boot Images:
 Boot Image Name: standard
 Boot Image Type:
 Boot Image BIF: xilinx_zcu104_base_202010_1/boot/linux.bif
 Boot Image Data: xilinx_zcu104_base_202010_1/xrt/image
 Boot Image Boot Mode: sd
 Boot Image RootFileSystem:
 Boot Image Mount Path: /mnt
 Boot Image Read Me: xilinx_zcu104_base_202010_1/boot/
generic.readme
 Boot Image QEMU Args: xilinx_zcu104_base_202010_1/qemu/
pmu_args.txt:xilinx_zcu104_base_202010_1/qemu/qemu_args.txt
 Boot Image QEMU Boot:
 Boot Image QEMU Dev Tree:
Supported Runtimes:
 Runtime: OpenCL

Section V: Vitis Environment Reference Materials
Chapter 28: platforminfo Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 387Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=387

Chapter 29

xbutil Utility
The Xilinx® Board Utility (xbutil) is a standalone command line utility that is included with the
Xilinx Run Time (XRT) installation package. The xbutil command only supports platforms on
Alveo Data Center accelerator cards, and embedded processor-based platforms.

Accelerator cards are partitioned into a user function and a management function to provide
different levels of card access. The user function allows end users to load and run their
applications, while the management function is for system administrators to manage the card.
The xbutil utility interacts with the user function. The xbmgmt utility, which requires root
privilege, is for interacting with the management function. The reason for splitting the function
access between the two utilities is to provide some security for the management features of the
tool.

XRT needs to be installed and identified on the card. For customized Alveo card setups in a
Vivado flow, xbutil is not used. It includes multiple commands to validate and identify the
installed accelerator card(s) along with additional card details including on card memory, host
interface, target platform name, and system information. This information can be used for both
card administration and application debugging.

IMPORTANT! Although xbutil  supports embedded processor platforms, only the following commands
are available for use with those platforms: dump , help , program  (for DFX platforms only), and query,
scan, and status.

The xbutil command line format is:

xbutil <command> [options]

Where the available commands and options are given below.

• clock

• dmatest

• dump

• m2mtest

• mem --read

• mem --write

• p2p

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 388Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=388

• program

• query

• reset

• scan

• status

• top

• validate

• version

TIP: You can use the help  command to list the available xbutil  commands and options:

xbutil help

clock
IMPORTANT! This option cannot be used with embedded processor platforms.

The clock command allows you to change the clock frequencies of the clock(s) to the Compute
Units (CUs) inside a xclbin. It has the following command line format:

xbutil clock [-d card] [-r region] [-f clock1_freq_MHz]
[-g clock2_freq_MHz] [-h clock3_freq_MHz]

The clock frequency specified with the -f switch is applied to all CUs. Clock frequency for
individual CUs cannot be changed independently. In addition, the xclbin must be programmed
and be capable or running at the specified clock frequency. CUs generated with the Vitis tools
only have clock1. RTL-based kernels can have clock2 and clock3 connected.

The following table lists the available options.

Table 42: xbutil clock Command Options

Option Description Required
-d <card> Specifies the target card. <card> can be specified as either the

card_id or Bus:Device:Function (BDF). Defaults to card_id = 0 if
not specified.

Note: Use the xbutil scan command to display both the
card_id and BDF for installed cards.

N

-r <region> Deprecated and has no effect. Option will be removed in
subsequent release.

N

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 389Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=389

Table 42: xbutil clock Command Options (cont'd)

Option Description Required
-f <clock1_freq_MHz> Specifies clock frequency (in MHz) for the first clock. All

platforms have this clock.
Y

-g <clock2_freq_MHz> Specifies clock frequency (in MHz) for the second clock. Some
platforms might not have this clock.

N

-h <clock3_freq_MHz> Specifies clock frequency (in MHz) for the third clock. Some
platforms might not have this clock.

N

Use the xclbinutil Utility tool to list the available xclbin clocks.

It is necessary to program the xclbin prior to changing the clock frequency. See program to
program the xclbin. Once the xclbin is programmed, the clock frequency can be changed.

For example, to change clock1 in card_ID = 0 to 100 MHz, run the following command:

xbutil clock -d 0 -f 100

Similarly, to change two clocks in card_ID = 0, such that clock1 is set to 200 MHz and clock2 is
set to 250 MHz, run this command:

xbutil clock -d 0 -f 200 -g 250

The following example is an output after running this command successfully:

INFO: Found total 1 card(s), 1 are usable
INFO: xbutil clock succeeded.

If no xclbin is programmed, a message similar to the following will be displayed. Program the
xclbin before running the clock command.

INFO: Found total 1 card(s), 1 are usable
WARNING: 'uuid' invalid, unable to find uuid.
Has the bitstream been loaded? See 'xbutil program'.
ERROR: xbutil clock failed.

dmatest
IMPORTANT! This option cannot be used with embedded processor platforms.

The dmatest command is used to validate the card memory throughput by performing data
transfer tests between the host machine and global memory on a specified card. The dmatest is
run as part of the validate command.

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 390Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=390

It has the following command line format:

xbutil dmatest [-d card] [-b [0x]block_size_KB]

The following table lists the available options.

Table 43: xbutil dmatest Command Options

Option Description Required
-d <card> Specifies the target card. <card> can be specified as either the card_id or

Bus:Device:Function (BDF). Defaults to card_id = 0 if not specified.

Note: Use the xbutil scan command to display both the card_id and
BDF for installed cards.

N

-b blocksize Specifies the test block size (in KB). Block size defaults to 65536 (KB) if -b
option is not specified. Block size must be a power of 2.
The block size can be specified in both decimal or hexadecimal formats.
For example, both -b 1024 and -b 0x400 set the block size to 1024 KB.

N

It is necessary to program the xclbin prior to running dmatest. See program to program the
xclbin.

The dmatest command only performs throughput tests on those DDR or HBM banks accessed
by the xclbin programmed to the card.

An example of the command output on a U200 with an xclbin using DDR banks 0, 1, 2, and 3
is shown below:

INFO: Found total 1 card(s), 1 are usable
Total DDR size: 65536 MB
Reporting from mem_topology:
Data Validity & DMA Test on bank0
Host -> PCIe -> FPGA write bandwidth = 11341.5 MB/s
Host <- PCIe <- FPGA read bandwidth = 11097.3 MB/s
Data Validity & DMA Test on bank1
Host -> PCIe -> FPGA write bandwidth = 11414.6 MB/s
Host <- PCIe <- FPGA read bandwidth = 10981.7 MB/s
Data Validity & DMA Test on bank2
Host -> PCIe -> FPGA write bandwidth = 11345.1 MB/s
Host <- PCIe <- FPGA read bandwidth = 11189.2 MB/s
Data Validity & DMA Test on bank3
Host -> PCIe -> FPGA write bandwidth = 11121.7 MB/s
Host <- PCIe <- FPGA read bandwidth = 11375.7 MB/s
INFO: xbutil dmatest succeeded.

Similarly, an example of the command output on a U50 with an xclbin using HBM port 0, 1, 2,
and 3 is shown below:

INFO: Found total 1 card(s), 1 are usable
Total DDR size: 0 MB
Reporting from mem_topology:
Data Validity & DMA Test on HBM[0]
Buffer Size: 256 MB
Host -> PCIe -> FPGA write bandwidth = 11950.9 MB/s

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 391Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=391

Host <- PCIe <- FPGA read bandwidth = 11940.3 MB/s
Data Validity & DMA Test on HBM[1]
Buffer Size: 256 MB
Host -> PCIe -> FPGA write bandwidth = 11947 MB/s
Host <- PCIe <- FPGA read bandwidth = 11958.1 MB/s
Data Validity & DMA Test on HBM[2]
Buffer Size: 256 MB
Host -> PCIe -> FPGA write bandwidth = 12077.2 MB/s
Host <- PCIe <- FPGA read bandwidth = 12064.1 MB/s
Data Validity & DMA Test on HBM[3]
Buffer Size: 256 MB
Host -> PCIe -> FPGA write bandwidth = 11989.5 MB/s
Host <- PCIe <- FPGA read bandwidth = 11976 MB/s
INFO: xbutil dmatest succeeded.

If no xclbin is programmed, a message similar to the following will be displayed.

INFO: Found total 1 card(s), 1 are usable
'uuid' invalid, please re-program xclbin.

dump
The dump command returns extensive card and system information including OS, XRT, board,
electrical, thermal and xclbin in JSON format to allow for scripted flows. The output format
and content are committed and will be backward compatible when changes are made to this
command.

It has the following command line format:

xbutil dump [-d card]

The following table lists the available option.

Table 44: xbutil dump Command Option

Option Description Required
-d <card> Specifies the target card. <card> can be specified as either the

card_id or Bus:Device:Function (BDF). Defaults to card_id = 0 if
not specified.

Note: Use the xbutil scan command to display both the
card_id and BDF for installed cards.

N

An example of the command output is shown below:

{
 "version": "1.1.0",
 "system": {
 "sysname": "Linux",
 "release": "4.15.0-74-generic",
 "version": "#84-Ubuntu SMP Thu Dec 19 08:06:28 UTC 2019",

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 392Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=392

 "machine": "x86_64",
 "glibc": "2.27",
 "linux": "Ubuntu 18.04.3 LTS",
 "cores": "48",
 "memory": "31812",
 "model": "Precision 7920 Tower",
 "now": "Mon Jan 13 15:57:59 2020"
 },
 "runtime": {
 "build": {
 "version": "2.4.19",
 "hash": "be6279809c82b3b6abfd6a6baed6343bd4bda232",
 "date": "2020-01-09 10:57:59",
 "branch": "2019.2_PU1",
 "xocl": "2.4.19,be6279809c82b3b6abfd6a6baed6343bd4bda232",
 "xclmgmt": "2.4.19,be6279809c82b3b6abfd6a6baed6343bd4bda232"
 }
 },
 "board": {
 "info": {
 "dsa_name": "xilinx_u250_xdma_201830_2",
 "vendor": "0x10ee",
 "device": "0x5005",
 "subdevice": "0x000e",
 "subvendor": "0x10ee",
 "xmcversion": "2019107",
 "xmc_oem_id": "0x0",
 "serial_number": "21320493802N",
 "max_power": "225W",
 "sc_version": "4.2.0",
 "ddr_size": "68719476736",
 "ddr_count": "4",
 "clock0": "250",
 "clock1": "500",
 "clock2": "0",
 "pcie_speed": "3",
 "pcie_width": "16",
 "dma_threads": "2",
 "mig_calibrated": "true",
 "idcode": "0x4b57093",
 "fpga_name": "xcu250-figd2104-2L-e",
 "dna": "",
 "p2p_enabled": "0"
 },
 "physical": {
 "thermal": {
 "pcb": {
 "top_front": "51",
 "top_rear": "41",
 "btm_front": "50"
 },
 "fpga_temp": "53",
 "tcrit_temp": "51",
 "fan_presence": "A",
 "fan_speed": "1262",
 "cage": {
 "temp0": "0",
 "temp1": "0",
 "temp2": "0",
 "temp3": "0"
 }
 },
 "electrical": {

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 393Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=393

 "12v_pex": {
 "voltage": "12100",
 "current": "1480"
 },
 "12v_aux": {
 "voltage": "12121",
 "current": "1369"
 },
 "3v3_pex": {
 "voltage": "3349",
 "current": "0"
 },
 "3v3_aux": {
 "voltage": "3316"
 },
 "ddr_vpp_bottom": {
 "voltage": "2500"
 },
 "ddr_vpp_top": {
 "voltage": "2500"
 },
 "sys_5v5": {
 "voltage": "5492"
 },
 "1v2_top": {
 "voltage": "1207"
 },
 "1v2_btm": {
 "voltage": "1199"
 },
 "1v8": {
 "voltage": "1824"
 },
 "0v85": {
 "voltage": "856",
 "current": "0"
 },
 "mgt_0v9": {
 "voltage": "908"
 },
 "12v_sw": {
 "voltage": "12038"
 },
 "mgt_vtt": {
 "voltage": "1203"
 },
 "vccint": {
 "voltage": "850",
 "current": "16668"
 },
 "vcc3v3": {
 "voltage": "0"
 },
 "hbm_1v2": {
 "voltage": "0"
 },
 "vpp2v5": {
 "voltage": "0"
 },
 "vccint_bram": {
 "voltage": "0"
 }
 },

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 394Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=394

 "power": "34"
 },
 "error": {
 "firewall": {
 "firewall_level": "0",
 "firewall_status": "0",
 "firewall_time": "0",
 "status": "(GOOD)"
 }
 },
 "pcie_dma": {
 "transfer_metrics": {
 "chan": {
 "0": {
 "h2c": "6240 MB",
 "c2h": "12160 MB"
 },
 "1": {
 "h2c": "6240 MB",
 "c2h": "6144 MB"
 }
 }
 }
 },
 "memory": {
 "mem": {
 "0": {
 "ecc_status": "(None)",
 "ecc_ce_cnt": "0",
 "ecc_ue_cnt": "0",
 "ecc_ce_ffa": "0",
 "ecc_ue_ffa": "0",
 "type": "MEM_DDR4",
 "temp": "41",
 "tag": "bank0",
 "enabled": "true",
 "size": "16 GB",
 "mem_usage": "0 Byte",
 "bo_count": "0"
 },
 "1": {
 "ecc_status": "(None)",
 "ecc_ce_cnt": "0",
 "ecc_ue_cnt": "0",
 "ecc_ce_ffa": "0",
 "ecc_ue_ffa": "0",
 "type": "MEM_DDR4",
 "temp": "41",
 "tag": "bank1",
 "enabled": "true",
 "size": "16 GB",
 "mem_usage": "0 Byte",
 "bo_count": "0"
 },
 "2": {
 "ecc_status": "(None)",
 "ecc_ce_cnt": "0",
 "ecc_ue_cnt": "0",
 "ecc_ce_ffa": "0",
 "ecc_ue_ffa": "0",
 "type": "MEM_DDR4",
 "temp": "54",
 "tag": "bank2",

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 395Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=395

 "enabled": "true",
 "size": "16 GB",
 "mem_usage": "0 Byte",
 "bo_count": "0"
 },
 "3": {
 "ecc_status": "(None)",
 "ecc_ce_cnt": "0",
 "ecc_ue_cnt": "0",
 "ecc_ce_ffa": "0",
 "ecc_ue_ffa": "0",
 "type": "MEM_DDR4",
 "temp": "48",
 "tag": "bank3",
 "enabled": "true",
 "size": "16 GB",
 "mem_usage": "0 Byte",
 "bo_count": "0"
 },
 "4": {
 "type": "**UNUSED**",
 "temp": "0",
 "tag": "PLRAM[0]",
 "enabled": "false",
 "size": "128 KB",
 "mem_usage": "0 Byte",
 "bo_count": "0"
 },
 "5": {
 "type": "**UNUSED**",
 "temp": "0",
 "tag": "PLRAM[1]",
 "enabled": "false",
 "size": "128 KB",
 "mem_usage": "0 Byte",
 "bo_count": "0"
 },
 "6": {
 "type": "**UNUSED**",
 "temp": "0",
 "tag": "PLRAM[2]",
 "enabled": "false",
 "size": "128 KB",
 "mem_usage": "0 Byte",
 "bo_count": "0"
 },
 "7": {
 "type": "**UNUSED**",
 "temp": "0",
 "tag": "PLRAM[3]",
 "enabled": "false",
 "size": "128 KB",
 "mem_usage": "0 Byte",
 "bo_count": "0"
 }
 }
 },
 "xclbin": {
 "uuid": "c5b9a584-9b70-4902-ae32-addf5c1c6e0c"
 },
 "compute_unit": {
 "0": {
 "name": "bandwidth1:kernel_1",

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 396Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=396

 "base_address": "25165824",
 "status": "(IDLE)"
 },
 "1": {
 "name": "bandwidth2:kernel_2",
 "base_address": "25231360",
 "status": "(IDLE)"
 }
 }
 },
 "debug_profile": {
 "device_info": {
 "error": "0",
 "device_index": "0",
 "user_instance": "129",
 "nifd_instance": "0",
 "device_name": "\/dev\/dri\/renderD129",
 "nifd_name": "\/dev\/nifd0"
 }
 }
}

If an invalid card index is supplied, the following message will be displayed:

ERROR: Card index 1 is out of range

m2mtest
IMPORTANT! This option cannot be used with embedded processor platforms.

The m2mtest command performs throughput data transfer tests between two device memory
banks on a specified card. Note, only platforms supporting M2M feature, see Alveo Data Center
Accelerator Card Platforms User Guide (UG1120), can run this command. In addition, it is necessary
to download an xclbin on the card which uses at least two memory banks prior to running
m2mtest, else running this command returns an error. The m2mtest command only performs
throughput tests on those memory banks accessed by the xclbin downloaded to the card.

It has the following command line format:

xbutil m2mtest [-d card]

The following table lists the available option.

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 397Send Feedback

https://www.xilinx.com/cgi-bin/docs/bkdoc?k=accelerator-cards;d=ug1120-alveo-platforms.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=397

Table 45: xbutil m2mtest Command Option

Option Description Required
-d <card> Specifies the target card. <card> can be specified as either the

card_id or Bus:Device:Function (BDF). Defaults to card_id = 0 if
not specified.

Note: Use the xbutil scan command to display both the
card_id and BDF for installed cards.

N

An example of the command output with an xclbin using DDR banks 0, 1, 2, and 3 is shown
below:

INFO: Found total 2 card(s), 2 are usable
bank0 -> bank1 M2M bandwidth: 12050.5 MB/s
bank0 -> bank2 M2M bandwidth: 12074.3 MB/s
bank0 -> bank3 M2M bandwidth: 12082.9 MB/s
bank1 -> bank2 M2M bandwidth: 12061.8 MB/s
bank1 -> bank3 M2M bandwidth: 12105.2 MB/s
bank2 -> bank3 M2M bandwidth: 12065.8 MB/s
INFO: xbutil m2mtest succeeded.

If no xclbin has been loaded, the following error message will be displayed:

'uuid' invalid, please re-program xclbin.

If the command is run on platforms not supporting M2M feature, the following error will be
displayed:

M2M is not available. Skipping validation
ERROR: xbutil m2mtest failed.

mem --read
IMPORTANT! This option cannot be used with embedded processor platforms.

The mem --read command reads the indicated number of bytes starting at a specified memory
address and writes the contents into an output file.

It has the following command line format:

xbutil mem --read [-d card] [-a [0x]start_addr]
[-i size_bytes] [-o output filename]

The following table lists the available options.

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 398Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=398

Table 46: xbutil mem --read Command Options

Option Description Required
-d <card> Specifies the target card. <card> can be specified as either the

card_id or Bus:Device:Function (BDF). Defaults to card_id = 0 if
not specified.

Note: Use the xbutil scan command to display both the
card_id and BDF for installed cards.

N

-a <start_addr> Specifies a valid starting address in either hex or decimal
format. Hex format requires leading 0x that is, 0x100. Default
address is 0x0.
Valid addresses can be obtained using the Linux dmesg
command as outlined below.

N

-i <size_bytes> Specifies the memory transfer size in bytes in either hex or
decimal format. Hex format requires leading 0x that is, 0x100.
Default size is 0x20000.

N

-o <output_file_name> Output file name. Default output file is memread.out if output
file name not specified.

N

An example of the output using the following command with xclbin using DDR banks 0, 1, 2,
and 3 shown below:

xbutil mem --read -a 0x0 -d2 -i 0x10

INFO: Found total 3 card(s), 3 are usable
INFO: Reading from single bank, 256 bytes from DDR/HBM/PLRAM address
0x4000000000
INFO: Read size 0x100 B. Total Read so far 0x100
INFO: Read data saved in file: memread.out; Num of bytes: 256 bytes
INFO: xbutil mem succeeded.

An example of the content of the file generated with the above command is given below. The
Linux hex dump command xxd was used to display the file.

00000000: 3d3d 3d3d 5354 4152 5420 6f66 2044 4452 ====START of DDR
00000010: 2044 6174 613d 3d3d 3d3d 3d3d 3d3d 0a00 Data=========..
00000020: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
00000030: 0a3d 3d3d 3d3d 454e 4420 6f66 2044 4452 .=====END of DDR
00000040: 2044 6174 613d 3d3d 3d3d 3d3d 3d3d 0a00 Data=========..

The following error is returned if an invalid starting address is used. The starting address must be
within the address space of the device. In this example 0x400 is an invalid starting address:

ERROR: Start address 0x400 is not valid
Available memory banks:
ERROR: xbutil mem failed.

TIP: Use grep to display the available address spaces. For instance, the following command displays the
DDR memory base addresses:

dmesg | grep -A 10 -i ddr

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 399Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=399

The Linux dmesg output will give the base address for the various DDR memories. A sample of
the output for DDR[1] is shown below:

[23174.283512] xocl 0000:a6:00.1: xocl_init_mem: Memory Bank: DDR[1]
[23174.283514] xocl 0000:a6:00.1: xocl_init_mem: Base Address:0x8000000000
[23174.283515] xocl 0000:a6:00.1: xocl_init_mem: Size:0x400000000

Replace the -i ddr search term above with the -i hbm to look up the base address for HBM
memories.

To write a known byte pattern, see mem --write.

mem --write
IMPORTANT! This option cannot be used with embedded processor platforms.

The mem --write command writes a defined pattern to a specified set of memory locations.

It has the following command line format:

xbutil mem --write [-d card] [-a [0x]start_addr]
[-i size_bytes] [-e pattern_byte]

The following table lists the available options.

Table 47: xbutil mem --write Command Options

Option Description Required
-d <card> Specifies the target card. <card> can be specified as either the

card_id or Bus:Device:Function (BDF). Defaults to card_id = 0 if
not specified.

Note: Use the xbutil scan command to display both the
card_id and BDF for installed cards.

N

-a <start_addr> Specifies a valid starting address in either hex or decimal
format. Hex format requires leading 0x that is, 0x100. Default
address is 0x0.
Valid addresses can be obtained using the Linux dmesg
command as outlined below.

N

-i <size_bytes> Specifies the memory transfer size in bytes in either hex or
decimal format. Hex format requires leading 0x that is, 0x100.

N

-e <pattern> Specifies the byte pattern written to all defined byte locations in
either hex or decimal format. Hex format requires leading 0x
that is, 0xEF.

N

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 400Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=400

An example of the output using the following command with xclbin using DDR banks 0, 1, 2,
and 3 shown below:

xbutil mem --write -a 0x0 -d2 -i 0x10 -e 0xef

INFO: Found total 1 card(s), 1 are usable
INFO: Writing to single bank, 16 bytes from DDR/HBM/PLRAM address 0x0
INFO: Writing DDR/HBM/PLRAM with 16 bytes of pattern: 0xef from address 0x0
INFO: xbutil mem succeeded.

The following error is returned if an invalid starting address is used. The starting address must be
within the address space of the device. In this example 0x400 is an invalid starting address.

ERROR: Start address 0x400 is not valid
Available memory banks:
ERROR: xbutil mem failed.

TIP: Use grep to display the available address spaces. For instance, the following command displays the
DDR memory base addresses:

dmesg | grep -A 10 -i ddr

The Linux dmesg output will give the base address for the various DDR memories. A sample of
the output for DDR[1] is shown below:

[23174.283512] xocl 0000:a6:00.1: xocl_init_mem: Memory Bank: DDR[1]
[23174.283514] xocl 0000:a6:00.1: xocl_init_mem: Base Address:0x8000000000
[23174.283515] xocl 0000:a6:00.1: xocl_init_mem: Size:0x400000000

Replace the -i ddr search term above with the -i hbm to look up the base address for HBM
memories.

To read memory addresses, see mem --read.

p2p
IMPORTANT! This option cannot be used with embedded processor platforms.

The p2p command is used to enable/disable P2P feature and check current configuration. Note,
only platforms supporting P2P feature, see Alveo Data Center Accelerator Card Platforms User
Guide (UG1120), can run this command.

P2P configuration is persistent across warm reboot.

Note: Enabling or disabling P2P requires root privilege.

See PCIe Peer-to-Peer Support for more information.

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 401Send Feedback

https://www.xilinx.com/cgi-bin/docs/bkdoc?k=accelerator-cards;d=ug1120-alveo-platforms.pdf
https://xilinx.github.io/XRT/2019.1/html/p2p.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=401

It has the following command line format:

xbutil p2p [-d card] --[enable | disable | validate]

The following table lists the available options.

Table 48: xbutil p2p Command Options

Option Description Required
-d <card> Specifies the target card. <card> can be specified as either

the card_id or Bus:Device:Function (BDF). Defaults to
card_id = 0 if not specified.

Note: Use the xbutil scan command to display both the
card_id and BDF for installed cards.

N

--enable Enables p2p
Option '–enable', '–disable', and '–validate' are mutually
exclusive. Only one can be in the command.
A warm reboot is required if the returned xbutil query
status for P2P is no_iomem.

--enable,
--disable,
--validate

mutually exclusive

--disable Enables p2p
Option '–enable', '–disable', and '–validate' are mutually
exclusive. Only one can be in the command.
This might require warm reboot to fully disable.

--enable,
--disable,
--validate

mutually exclusive
--validate Validates p2p feature.

Option '–enable', '–disable' and '–validate' are mutually
exclusive. Only one can be in the command.
Run after a warm reboot if it is needed.

--enable,
--disable,
--validate

mutually exclusive

Use xbutil query to display the current status of P2P. The following is a partial output of the
xbutil query command showing the current status under the heading P2P Enabled.

PCIe DMA chan(bidir) MIG Calibrated P2P Enabled
GEN 3x16 2 true false

Table 49: P2P Enabled Returned Value Definition

Value Comment
true P2P is enabled.

false P2P is disabled.

no_iomem P2P is enabled in device but system could not allocate I/O memory, warm reboot is needed.

If P2P is not enabled when trying to validate, validation will be skipped and the following
message will be displayed:

P2P BAR is not enabled. Skipping validation

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 402Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=402

If the card platform does not support P2P, the following message will be displayed:

ERROR: P2P is not supported on this platform

If no xclbin is programmed, the following message will be displayed:

'uuid' invalid, please re-program xclbin.

program
IMPORTANT! This option is supported for use with embedded processor DFX platforms.

The program command downloads a specified xclbin binary to the programmable region on
the card.

It has the following command line format:

xbutil program [-d card] [-r region] -p <xclbin_filename>

The following table lists the available options.

Table 50: xbutil program Command Options

Option Description Required
-d <card> Specifies the target card. <card> can be specified as either the

card_id or Bus:Device:Function (BDF). Defaults to card_id = 0 if
not specified.

Note: Use the xbutil scan command to display both the
card_id and BDF for installed cards.

N

-r <region> Deprecated and has no effect. Option will be removed in
subsequent release.

N

-p <xclbin_filename> Specifies the file name of the xclbin binary file to download to
the card.

Y

When an xclbin is successfully downloaded to the card, the following message is displayed:

INFO: Found total 1 card(s), 1 are usable
INFO: xbutil program succeeded.

If the subsequent use of the xbutil program uses the same xbutil_filename, the xbutil
will not be downloaded as it already exists on the card, but the above message will be identical.

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 403Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=403

If the specified xclbin file does not exist, the following message will be displayed:

ERROR: Cannot open <my_xclbin>.xclbin. Check that it exists and is readable.
ERROR: xbutil program failed.

query
IMPORTANT! This option cannot be used with embedded processor platforms.

The query command returns detailed card status information in human readable format. See
dump for output in JSON format.

It has the following command line format:

xbutil query [-d card [-r region]]

The following table lists the available options.

Table 51: xbutil query Command Options

Option Description Required
-d <card> Specifies the target card. <card> can be specified as either the

card_id or Bus:Device:Function (BDF). Defaults to card_id = 0 if
not specified.

Note: Use the xbutil scan command to display both the
card_id and BDF for installed cards.

N

-r <region> Deprecated and has no effect. Option will be removed in
subsequent release.

N

There is a significant amount of information returned. An example of the output is given below.
The output has been divided into separate sections to better describe the content.

System Configuration

Table 52: System Configuration Field Definition

Field Description
OS Name Name of the OS running on the machine

Release OS release number

Version OS Version

Machine CPU-based architecture

Glibc GLIBC version installed

Distribution Distribution

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 404Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=404

Table 52: System Configuration Field Definition (cont'd)

Field Description
Now Current date and time

An example of the system configuration is shown below:

System Configuration
OS name: Linux
Release: 4.15.0-74-generic
Version: #83~16.04.1-Ubuntu SMP Wed Dec 18 04:56:23 UTC 2019
Machine: x86_64
Glibc: 2.23
Distribution: Ubuntu 16.04.6 LTS
Now: Wed Jan 22 15:30:36 2020

XRT Information

Table 53: XRT Field Definition

Field Description
Version XRT version

Git Hash Associated GIT hash

Git Branch Associated GIT branch

Build Date XRT build date

XOCL XOCL version

XCLMGMT XCLMGMT version

XRT Information
Version: 2.3.1301
Git Hash: 192e706aea53163a04c574f9b3fe9ed76b6ca471
Git Branch: 2019.2
Build Date: 2019-10-24 20:04:29
XOCL: 2.3.1301,192e706aea53163a04c574f9b3fe9ed76b6ca471
XCLMGMT: 2.3.1301,192e706aea53163a04c574f9b3fe9ed76b6ca471

Card Platform (Shell) Information

Table 54: Card Platform (Shell) Field Definition

Field Description
Shell Platform installed on the card

FPGA FPGA name

IDCode ID code of platform

Vendor Vendor ID

Device Device ID

SubDevice SubDevice ID

SubVendor SubVendor ID

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 405Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=405

Table 54: Card Platform (Shell) Field Definition (cont'd)

Field Description
SerNum Unique card serial number

DDR Size Total amount of DDR RAM available on the card in GB

DDR Count Total number of DDR DIMMs installed on the card

Clock0 Clock0 frequency in MHz

Clock1 Clock1 frequency in MHz

Clock2 Clock2 frequency in MHz

PCIe Trained PCIe link status

DMA chan(bidir) Number of DMA channels on the card

MIG Calibrated When TRUE MIG has been calibrated, FALSE indicates the MIG has not been
calibrated.

P2P Enabled Returns status of P2P. Status will be one of the following:
• true: P2P is enabled
• false: P2P is disabled
• no_iomem: P2P is enabled in device but system could not allocate I/O memory,

warm reboot is needed

OEM ID ID used by OEMs

Interface UUID A unique identifier which can be used to determine whether partial bitstreams
containing the various partitions of the platform are logically and physically
compatible with each other.

Logic UUID A unique identifier which can be used to determine whether partial bitstreams
containing the various partitions of the platform are logically and physically
compatible with each other.

This is an example output of the card information:

Shell FPGA IDCode
xilinx_u50_gen3x16_xdma_201920_3 0x14b77093
Vendor Device SubDevice SubVendor SerNum
0x10ee 0x5021 0x000e 0x10ee 00501201A030
DDR size DDR count Clock0 Clock1 Clock2
0 Byte 0 250 500 450
PCIe DMA chan(bidir) MIG Calibrated P2P Enabled OEM ID
GEN 3x16 2 true false 0x0
Interface UUID
862c7020a250293e32036f19956669e5
Logic UUID
f465b0a3ae8c64f619bc150384ace69b
DNA

Temperature

Card power and thermal information are given next. Temperatures are reported in Celsius.

Table 55: Temperature Field Definition

Field Description
PCB Top Front Temperature at the top front of the PCB in Celsius

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 406Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=406

Table 55: Temperature Field Definition (cont'd)

Field Description
PCB Top Rear Temperature at the top rear of the PCB in Celsius

PCB BTM Front Temperature at the bottom front of the PCB in Celsius

FPGA Temp FPGA core temperature in Celsius

TCRIT Temp Critical temperature in Celsius of the fan controller. Present for both active and
passive cards.

Fan Presence Represents the presence of a fan on the card.
• A – Active cooling. Fan is present on card.
• P – Passive cooling. Fan is not present on the card and must be cooled by host

server.

Fan Speed Fan speed (RPM). Returned as N/A for passive cards.

QSFP 0,1,2,3 Temperature in Celsius of the QSFP module

An example of the temperature output is given below:

Temperature(C)
PCB TOP FRONT PCB TOP REAR PCB BTM FRONT
42 37 42
FPGA TEMP TCRIT Temp FAN Presence FAN Speed(RPM)
44 42 A 1108
QSFP 0 QSFP 1 QSFP 2 QSFP 3
0 0 0 0

Electrical

This provides various voltage (mV) and current (mA) readings.

Table 56: Electrical Field Definition

Field Description
12V PEX Voltage measurement (12V nominal) from the 12V Power source from the PCIe

connector.

12V AUX Voltage measurement (12V nominal) from the 12V, 6 or 8-pin PCIe AUX power cable.

12V PEX Current Current measurement of the power drawn by the PCIe connector.

12V AUX Current Current measurement of the power drawn by the 6 or 8-pin PCIe AUX power cable.

3V3 PEX Voltage measurement (3.3V nominal) of the 3.3V Power source from the PCIe
connector.

3V3 AUX Voltage measurement (3.3V nominal) of the 3.3V AUX Power sourced from the PCIe
connector.

DDR VPP BOTTOM Voltage measurement (2.5V nominal) for powering the onboard VPP for the DDR4
parts on the lower portion of the card.

DDR VPP TOP Voltage measurement (2.5V nominal) for powering the onboard VPP for the DDR4
parts on the upper portion of the card.

SYS 5V5 Voltage measurement (5.5V nominal) used for powering the onboard VCC_INT
regulators. Only on U2XX cards.

1V2 TOP Voltage measurement (1.2V nominal) for powering the onboard VDD for the DDR4
parts on the upper portion of the card.

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 407Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=407

Table 56: Electrical Field Definition (cont'd)

Field Description
1V8 TOP Voltage measurement (1.8V nominal) for powering the onboard VCCAUX, VCCAUXIO,

and MGTAVVCAUX regulator used by the FPGA.

0V85 Voltage measurement (0.85V nominal) of the onboard VCCINTIO and VCCBRAM
regulator used by the FPGA.

MGT 0V9 Voltage measurement (0.9V nominal) of the onboard MGTAVCC regulator for the
GTYs used by the FPGA.

12V SW Voltage measurement (12V nominal) of the 12V, 6 or 8-pin PCIe AUX power cable.

MGT VTT Voltage measurement (1.2V nominal) of the onboard MGTAVTT regulator for the
GTYs used by the FPGA.

1V2 BTM Voltage measurement (1.2V nominal) for powering the onboard VDD regulator for
the DDR4 parts on the lower portion of the card.

VCCINT VOL Voltage measurement (0.72-0.85V nominal) of the onboard VCCINT regulator for the
FPGA.

VCCINT CURR Current measurement of the VCCINT supply drawn by the card.

VCCINT BRAM VOL Voltage measurement (0.85V nominal) of the onboard VCCINT, VCCINTIO, and
VCCBRAM regulator used by the FPGA.

VCC3V3 VOL Voltage measurement (3.3V nominal) of the onboard 3.3V regulator used by the
QSFPs, and other circuits.

3V3 PEX CURR Current measurement of the 3.3V motherboard PCIe rail drawn by the card.

VCC0V85 CURR Current measurement of the VCCINTIO and VCCBRAM supply drawn by the card.

HBM1V2 VOL Voltage of 1.2V for powering the onboard VDD on the DDR4 HBM parts on the card.

VPP2V5 VOL Voltage of 2.5V for powering the onboard VPP on the DDR4 parts of the card.

An example of the output is given below:

Electrical(mV|mA)
12V PEX 12V AUX 12V PEX Current 12V AUX Current
12101 12202 1505 1268
3V3 PEX 3V3 AUX DDR VPP BOTTOM DDR VPP TOP
3357 3326 2500 2500
SYS 5V5 1V2 TOP 1V8 TOP 0V85
5515 1204 1836 855
MGT 0V9 12V SW MGT VTT 1V2 BTM
910 12064 1207 1209
VCCINT VOL VCCINT CURR VCCINT BRAM VOL VCC3V3 VOL
851 15894 0 0
3V3 PEX CURR VCC0V85 CURR HBM1V2 VOL VPP2V5 VOL
0 0 0 0

Card Power

Single field returning the total power (W) being consumed by the card.

An example of the output is given below:

Card Power(W)
33

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 408Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=408

Firewall Status

The firewall provides information when an error has been detected in hardware. This includes a
timestamp and the level of the firewall. The firewall has three levels, as discussed in AXI Firewall
Trips. In the following output, there are no detected firewall errors.

Table 57: Firewall Status Field Definition

Field Description
Tag Name of memory bank

Errors Indicates if an error occurred

CE Count Number of correctable errors.
Number is persistent, however can be reset through xbmgmt reset.

UE Count Number of uncorrectable errors. The count is persistent, but it can be reset using
xbmgmt reset.

An example of the output is given below:

Firewall Last Error Status
Level 0 : 0x0(GOOD)

ECC Error Status
Tag Errors CE Count UE Count CE FFA UE FFA
bank0 (None) 0 0 0x0 0x0
bank1 (None) 0 0 0x0 0x0
bank2 (None) 0 0 0x0 0x0
bank3 (None) 0 0 0x0 0x0

On some cards, for example the U50, the Satellite Controller (SC) monitors operating conditions.
If the card exceeds electrical or thermal limits, the SC will reset the workload on the card. In
some cases, this will be seen in the xbutil query output as a firewall trip. It will display the
time the trip occurred. An example of the post trip state is given below:

Firewall Last Error Status
Level 3 : 0x80004(RECS_CONTINUOUS_RTRANSFERS_MAX_WAIT|
RECS_WRITE_TO_BVALID_MAX_WAIT)
Error occurred on: Tue 2020-04-28 15:16:47 MDT

The card should be okay to use in this state.

Memory Status

The memory topology along with the DMA transfer metrics are provided next, followed by
streaming transfers. The DMA metrics include the transfer of data between the host and card.
Host to card transfers are indicated by h2c, while card to host transfer are defined by c2h.

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 409Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=409

An example of the output is given below. If no xclbin has been loaded, no memory status will
be displayed.

Memory Status
 Tag Type Temp(C) Size Mem Usage BO count
[0] bank0 MEM_DDR4 37 16 GB 16 MB 1
[1] bank1 MEM_DDR4 39 16 GB 16 MB 1
[2] bank2 MEM_DDR4 47 16 GB 16 MB 1
[3] bank3 MEM_DDR4 43 16 GB 16 MB 1
[4] PLRAM[0] **UNUSED** N/A 128 KB 0 Byte 0
[5] PLRAM[1] **UNUSED** N/A 128 KB 0 Byte 0
[6] PLRAM[2] **UNUSED** N/A 128 KB 0 Byte 0

DMA Transfer Metrics

An example of the output is given below. If no xclbin has been loaded, no metrics will be
displayed.

DMA Transfer Metrics
Chan[0].h2c: 12384 MB
Chan[0].c2h: 15200 MB
Chan[1].h2c: 6240 MB
Chan[1].c2h: 6144 MB

Streams

This is available for streaming platforms only.

An example of the output is given below:

Streams
Tag Flow ID Route ID Status Total (B/#) Pending (B/#)

Xclbin UUID

This displays the xclbin UUID. An example of the output is given below. If no xclbin has
been loaded, it will return all zeros as the UUID.

Xclbin UUID
dfd5a66a-36aa-41c6-88bb-c85a86d15512

Compute Unit Status

The Compute Units (CU) present in the xclbin loaded to the card are displayed. For each CU, it
displays the name, PCIe BAR address, and the status, which can be IDLE, START, and DONE. The
output below shows the xclbin ID and two CUs both with IDLE status.

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 410Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=410

An example of the output is given below. If no xclbin has been loaded, no CU status will be
displayed.

Compute Unit Status
CU[1]: bandwidth1:kernel_1 @0x1c00000 (IDLE)
CU[0]: bandwidth2:kernel_2 @0x1800000 (IDLE)

reset
IMPORTANT! This option cannot be used with embedded processor platforms.

The reset command resets the programmable region on the card. All running CUs in the region
are stopped and reset.

It has the following command line format:

xbutil reset [-d card]

The following table lists the available option.

Table 58: xbutil reset Command Option

Option Description Required
-d <card> Specifies the target card. <card> can be specified as either the

card_id or Bus:Device:Function (BDF). Defaults to card_id = 0 if
not specified.

Note: Use the xbutil scan command to display both the
card_id and BDF for installed cards.

N

The following example shows the output after running this command successfully:

All existing processes will be killed.
Are you sure you wish to proceed? [y/n]: y

scan (xbutil)
The xbutil scan command returns detailed system information including:

• System configuration details

• XRT information

• List of all cards installed on the system, except cards in GOLDEN state.

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 411Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=411

It has the following command line format and does not have any options.

xbutil scan

The following tables lists the fields returned from various sections of the xbutil scan
command.

Table 59: System Configuration Field Definition

Field Description
OS Name Name of the OS running on the machine

Release OS release number

Version OS Version

Machine CPU-based architecture

Model Machine model

CPU Cores Number CPU cores on the machine

Memory Total installed memory on the machine in MB

Glibc GLIBC version installed

Distribution Distribution

Now Current date and time

Table 60: XRT Field Definition

Field Description
Version XRT version

Git Hash Associated GIT hash

Git Branch Associated GIT branch

Build Date XRT build date

XOCL XOCL version

XCLMGMT XCLMGMT version

A list of each card installed on the system will also be returned. A separate line for each card will
be displayed. An example output for one card is shown below. It provides multiple fields detailing
the installed card. The fields are separated with a space.

[0] 0000:65:00.1 xilinx_u50_gen3x16_xdma_201920_3 user(inst=128)

The fields are defined in the following table.

Table 61: Installed Cards Field Definition

Field Description
[card_id] Provides an assigned card_id based on the card enumeration in the driver data

structures. A unique card_id is assigned for each card detected. The order can
change after a warm or cold reboot.

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020 www.xilinx.com
Vitis Application Acceleration Development 412Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=412

Table 61: Installed Cards Field Definition (cont'd)

Field Description
Bus : Device : Function Provides the enumerated card Bus:Device:Function (BDF) for each card installed. It

has the following format:
[Bus : Device : Function]
A card's BDF is determined based on the PCIe slot it is plugged into.

Note: Use the xbutil scan command to display both the card_id and BDF for
installed cards.

Platform name Platform name in the following format:

<company>_<card>_<customization>_<major_release>_<minor_release>

See Alveo Data Center Accelerator Card Platforms User Guide (UG1120) for platform
naming information.

user (inst = <value>) Returns the user function instance number associated with the card. The instance
number allows you to easily find the device node for each function.
In Linux OS, the device node can be found at: /dev/dri/renderD<inst>
In addition, the instance can be useful when mapping the dmesg information to a
specific card.

Below is an example of the xbutil scan output. The system configuration and XRT
information sections are first displayed followed by the detected card(s). In the below example,
one card is detected and assigned card_ID 0 and BDF is 0000:65:00.1. The platform flashed
and running on the card is xilinx_u50_gen3x16_xdma_201920_3 and the user instance has
been assigned 128.

INFO: Found total 1 card(s), 1 are usable
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
System Configuration
OS name:    Linux
Release:    4.15.0-96-generic
Version:    #97~16.04.1-Ubuntu SMP Wed Apr 1 03:03:31 UTC 2020
Machine:    x86_64
Model:      Super Server
CPU cores:  16
Memory:     15703 MB
Glibc:      2.23
Distribution:   Ubuntu 16.04.6 LTS
Now:        Tue Apr 14 21:08:05 2020
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
XRT Information
Version: 2.5.309
Git Hash: 9a03790c11f066a5597b133db737cf4683ad84c8
Git Branch: 2019.2_PU2
Build Date: 2020-02-23 18:51:37
XOCL: 2.5.309,9a03790c11f066a5597b133db737cf4683ad84c8
XCLMGMT: 2.5.309,9a03790c11f066a5597b133db737cf4683ad84c8
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 [0] 0000:65:00.1 xilinx_u50_gen3x16_xdma_201920_3 user(inst=128)

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  413Send Feedback

https://www.xilinx.com/cgi-bin/docs/bkdoc?k=accelerator-cards;d=ug1120-alveo-platforms.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=413


In cases where multiple cards are installed, the list of detected cards will be expanded. In the
example shown below, three cards are detected and assigned card_ID 0, 1, and 2, respectively.

[0] 0000:a6:00.1 xilinx_u280_xdma_201920_2 user(inst=130)
[1] 0000:73:00.1 xilinx_u250_xdma_201830_2 user(inst=129)
[2] 0000:17:00.1 xilinx_u200_xdma_201830_2 user(inst=128)

An asterisk proceeding the listed card indicates the card it not ready. An example message given
for unusable card is given below:

*[0] 0000:a6:00.1 xilinx_u280_xdma_201920_2(ts=0x5e172e16) user(inst=130)
WARNING: card(s) marked by '*' are not ready, run xbmgmt flash --scan --
verbose to further check the details.

Note: Cards in golden state (no partition flashed) will not be displayed.

status
The status command reports the status of the Vitis performance monitor (SPM) and
lightweight AXI protocol checker (LAPC) debug IPs contained in the xclbin programmed to the
card.

It has the following command line format:

xbutil status [-d <card>] [--debug_ip_name]

The following table lists the available options.

Table 62: xbutil status Command Options

Option Description Required
-d <card> Specifies the target card. <card> can be specified as either the

card_id or Bus:Device:Function (BDF). Defaults to card_id = 0 if
not specified.

Note: Use the xbutil scan command to display both the
card_id and BDF for installed cards.

N

--<ip_name> Returns status of the specified debug IP. N

The status command displays the type and number of the debug IP on the accelerator card.

xbutil status

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  414Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=414


An example output of the command is shown below. It lists all the debug IP found.

INFO: Found total 1 card(s), 1 are usable
Number of IPs found: 9
IPs found [<ipname>(<count>)]: aim(5) tracefunnel(1) monitorfifolite(1) 
monitorfifofull(1) accelmonitor(1)
Run 'xbutil status' with option --<ipname> to get more information about 
the IP
INFO: xbutil status succeeded.

The list of available IP is determined by the xclbin file compiled for use on the accelerator card
and include:

• Accelerator Monitor (AM): Count and trace the executions of compute units. Performance
Monitors are added using the --profile_kernel option as discussed in described in Vitis
Compiler General Options.

• AXI Interface Monitor (AIM): Count and trace transactions on AXI4 connections.

• AXI4-Stream Monitor (ASM): Count and trace transactions on AXI4-Stream.

• Lightweight AXI Protocol Monitor (LAPC): Protocol checking of AXI4. Protocol checkers are
added using the --dk option as described in Vitis Compiler General Options.

• Streaming Protocol Checker (SPC): Protocol checking of AXI4-Stream.

• Trace Funnel: Collects trace events from all monitors. If present, then trace was enabled using
the --profile_kernel option during compilation as described in Vitis Compiler General
Options, and using the timeline_trace option during runtime as described in xrt.ini File.

• FIFO Lite: Control of the PL FIFO that stores trace events. If present, then trace was enabled
during compilation and runtime, and memory offload was specified to be a FIFO in the PL
using the --trace_memory option during compilation as described in Vitis Compiler General
Options. Trace behavior is influenced by the settings in the xrt.ini File.

• FIFO Full: The data offload of the PL FIFO that stores trace events. If present, then trace was
enabled during compilation and runtime, and memory offload was specified to be a FIFO in
the PL using the --trace_memory option during compilation.

• TS2MM: Takes trace events and offloads them to a memory resource (DDR, HBM, PLRAM). If
present, then trace was enabled during compilation and runtime, and memory offload was
specified to be a memory resource using the --trace_memory option during compilation as
described in Vitis Compiler General Options.

You can get the status of specific IP using the following command syntax:

$ xbutil status --<ipname>

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  415Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=415


An example output using the --aim option is shown below:

$ xbutil status --aim

INFO: Found total 1 card(s), 1 are usable
AXI Interface Monitor Counters
Region or CU Type or Port           Wr Bytes Wr Trans. Rd Bytes Rd Tranx. Outstanding Cnt
runOnfpga_1  m_axi_maxiport0-DDR[1] 0        0         0        0         0
runOnfpga_1  m_axi_maxiport1-DDR[1] 0        0         0        0         0
shell        Memory to Memory       0        0         0        0         0  
shell        Host to Device         0        0         0        0         0  
shell        Peer to Peer           0        0         0        0         0
INFO: xbutil status succeeded.

The following is a code continuation of the columns:

INFO: Found total 1 card(s), 1 are usable
AXI Interface Monitor Counters
Region or CU Type or Port           Last Wr Addr Last Wr Data Last Rd Addr Last Rd Data
runOnfpga_1  m_axi_maxiport0-DDR[1] 0x0          0x0          0x0          0x0
runOnfpga_1  m_axi_maxiport1-DDR[1] 0x0          0x0          0x0          0x0  
shell        Memory to Memory       0x0          0x0          0x0          0x0       
shell        Host to Device         0x0          0x0          0x0          0x0      
shell        Peer to Peer           0x0          0x0          0x0          0x0  
INFO: xbutil status succeeded.

If no debug IPs are found in the xclbin, the following message will be displayed below:

INFO: Found total 1 card(s), 1 are usable
INFO: Failed to find any debug IPs on the platform. Ensure that a valid 
bitstream with debug IPs (SPM, LAPC) is successfully downloaded. 
INFO: xbutil status succeeded.

For more information on adding performance monitor counters (AM, AIM, ASM) and LAPC in
your design, see Techniques for Debugging Application Hangs.

top
IMPORTANT! This option cannot be used with embedded processor platforms.

The top command outputs card statistics including memory topology, DMA transfer metrics, and
Compute Unit usage data. This command is similar to the Linux top command. When running, it
continues to operate until q is entered in the terminal window to quit.

It has the following command line format:

xbutil top [-d card] [-i seconds]

The following table lists the available options.

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  416Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=416


Table 63: xbutil top Command Options

Option Description Required
-d <card> Specifies the target card. <card> can be specified as either the

card_id or Bus:Device:Function (BDF). Defaults to card_id = 0 if
not specified.

Note: Use the xbutil scan command to display both the
card_id and BDF for installed cards.

N

-i <seconds> Refresh rate (in seconds). Default is 1 second. N

For example, the following command will perform top with a two second refresh rate.

xbutil top -i 2

Table 64: Top Field Definition

Field Description
Device Memory Usage Percentage of memory used per memory bank.

Graphical usage bar will be displayed proportion to the amount of memory
used. Bar will be similar to the following:
||||||||||

Power Total card power

Mem Topology Assigned tag to the memory bank

Memory type (that is, DDR or HBM)

Temperature of the memory bank

Total available memory per memory bank

Current memory usage

Number of buffers allocated

Total DMA Transfer Metrics Accumulated bytes transferred because of reboot

CU Usage Number of commands executed by this CU. Numbers are accumulated until the
xclbin is changed where they are reset to zero.

The following example is an output after running this command:

Device Memory Usage
 [0] bank0      [ |||||||||||                                        25.0% ]
 [1] bank1      [                                                    0.00% ]
 [2] bank2      [                                                    0.00% ]
 [3] bank3      [                                                    0.00% ]
 
 
Power
34.0W
 
Mem Topology                                    Device Memory Usage
Tag             Type        Temp        Size    Mem Usage       BO nums
 [0] bank0      MEM_DDR4    36 C        16 GB   4 GB            16
 [1] bank1      MEM_DDR4    38 C        16 GB   0 Byte          0
 [2] bank2      MEM_DDR4    46 C        16 GB   0 Byte          0
 [3] bank3      MEM_DDR4    41 C        16 GB   0 Byte          0

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  417Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=417


 
Total DMA Transfer Metrics:
  Chan[0].h2c:  75 GB
  Chan[0].c2h:  78 GB
  Chan[1].h2c:  61600 MB
  Chan[1].c2h:  61440 MB
 
############################################################################
 
Compute Unit Usage:
CU[@0x1800000] : 68
CU[@0x1c00000] : 68
CU[@0x250000] : 6
 
############################################################################

If no xclbin is loaded, the following will be displayed:

Device Memory Usage
 [1] bank1      [                                                    0.00% ]

Power
23W

Mem Topology                                    Device Memory Usage
Tag              Type        Temp     Size      Mem Usage       BO nums
 [1] bank1       MEM_DDR4    36       64 GB     0 Byte          0

Total DMA Transfer Metrics:
  Chan[0].h2c:  0 Byte
  Chan[0].c2h:  0 Byte
  Chan[1].h2c:  0 Byte
  Chan[1].c2h:  0 Byte

############################################################################

Compute Unit Usage:

############################################################################

validate
IMPORTANT! This option cannot be used with embedded processor platforms.

The validate command generates a high-level, easy to read summary of the installed card. It
validates correct installation by performing the following set of tests:

1. Validates the card found.

2. Checks PCI Express link status.

3. Runs a verify kernel on the card.

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  418Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=418


4. Performs the following data bandwidth tests:

a. DMA test: Data transfers between host and card memory through PCI Express.

b. DDR or HBM test: Data transfers between kernels and card memory.

It has the following command line format:

xbutil validate [-d card]

The following table lists the available option.

Table 65: xbutil validate Command Option

Option Description Required
-d <card> Specifies the target card. <card> can be specified as either the

card_id or Bus:Device:Function (BDF). Defaults to card_id = 0 if
not specified.

Note: Use the xbutil scan command to display both the
card_id and BDF for installed cards.

N

The following is an example of the output after running this command:

INFO: Found 1 cards
 
INFO: Validating card[0]: xilinx_u200_xdma_201830_2
INFO: == Starting AUX power connector check:
INFO: == AUX power connector check PASSED
INFO: == Starting PCIE link check:
INFO: == PCIE link check PASSED
INFO: == Starting verify kernel test:
INFO: == verify kernel test PASSED
INFO: == Starting DMA test:
Buffer Size: 256 MB
Host -> PCIe -> FPGA write bandwidth = 8775.99 MB/s
Host <- PCIe <- FPGA read bandwidth = 12136.8 MB/s
INFO: == DMA test PASSED
INFO: == Starting device memory bandwidth test:
...........
Maximum throughput: 52428 MB/s
INFO: == device memory bandwidth test PASSED
INFO: == Starting PCIE peer-to-peer test:
P2P BAR is not enabled. Skipping validation
INFO: == PCIE peer-to-peer test SKIPPED
INFO: == Starting memory-to-memory DMA test:
bank0 -> bank1 M2M bandwidth: 12010.3 MB/s  
bank0 -> bank2 M2M bandwidth: 12051.6 MB/s  
bank0 -> bank3 M2M bandwidth: 12063.5 MB/s  
bank1 -> bank2 M2M bandwidth: 12052.7 MB/s  
bank1 -> bank3 M2M bandwidth: 12048.2 MB/s  
bank2 -> bank3 M2M bandwidth: 12052.2 MB/s  
INFO: == memory-to-memory DMA test PASSED
INFO: Card[0] validated successfully.
 
INFO: All cards validated successfully.

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  419Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=419


version
IMPORTANT! This option cannot be used with embedded processor platforms.

The version command returns the XRT build version details. It is identical to the version
command. It has the following command line format. There are no options.

xbutil version

The following table lists the fields returned from xbutil version command.

Table 66: Version Field Definition

Field Description
XRT Build Version XRT build version

Build Version Branch Build version branch

Build Version Hash Build version hash

Build Version Hash Date Build version branch date

Build Version Date Build version date

XOCL XOCL version

XCLMGMT XCLMGMT version

Below is an example output of xbutil version for a system with three cards installed.

      XRT Build Version: 2.3.1301
   Build Version Branch: 2019.2
     Build Version Hash: 192e706aea53163a04c574f9b3fe9ed76b6ca471
Build Version Hash Date: Thu, 24 Oct 2019 19:27:30 -0700
     Build Version Date: Thu, 24 Oct 2019 20:04:29 -0700
                   XOCL: 2.3.1301,192e706aea53163a04c574f9b3fe9ed76b6ca471
                XCLMGMT: 2.3.1301,192e706aea53163a04c574f9b3fe9ed76b6ca471

To return additional card details, use xbmgmt flash --scan.

Section V: Vitis Environment Reference Materials
Chapter 29: xbutil Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  420Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=420


Chapter 30

xbmgmt Utility
Xilinx® Board Management (xbmgmt) utility is a standalone command line tool that is included
with the Xilinx Runtime (XRT) installation package. The xbmgmt command supports both Alveo
Data Center accelerator cards, and embedded processor-based platforms.

Accelerator cards are partitioned into a user function and a management function to provide
different levels of card access. The user function allows end users to load and run their
applications, while the management function is for system administrators to manage the card.
The xbutil utility interacts with the user function. The xbmgmt utility, which requires root
privilege, is for interacting with the management function. The reason for splitting the function
access between the two utilities is to provide some security for the management features of the
tool.

IMPORTANT! The xbmgmt  utility only works with Alveo cards that have Xilinx provided shells/platforms.
XRT does not work on custom Vivado® designs.

This utility is used for card installation and administration, and requires sudo privileges when
running it. The xbmgmt supported tasks include flashing the card firmware, and scanning the
current device configuration.

The xbmgmt command line format is:

xbmgmt <command> [options]

Where the available commands and options are given below.

• flash

• scan

• version

TIP: You can use the help  command to list the available xbmgmt  commands and options, and access
help for individual commands by using the following:

xbmgmt help <command>

CAUTION! Using Expert only commands can damage your board and void your warranty. Consult your
FAE before usage.

Set up the xbmgmt command using the following scripts:

Section V: Vitis Environment Reference Materials
Chapter 30: xbmgmt Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  421Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=421


• For csh shell:

$ source /opt/xilinx/xrt/setup.csh

• For bash shell:

$ source /opt/xilinx/xrt/setup.sh

flash
IMPORTANT! This option cannot be used with embedded processor platforms.

The flash command has three sub-commands which are described in the following table.

Table 67: xbmgmt flash Sub-commands

Sub-command Description
--scan Query the card's flashable partition running on FPGA and installed on the host

system
--update Flash a target platform (flashable partition) to the card
--factory_reset Reset the card to factory condition

Each of the sub-commands are detailed below.

scan

The scan sub-command returns details of the flashable partition installed on each card along
with the flashable partitions installed on the host system. In addition, it also returns additional
information including SC version, BDF, Serial number, and MAC addresses.

It has the following command line format.

xbmgmt flash --scan [--verbose | --json]

Table 68: xbmgmt flash --scan Sub-command Options

Option Description Required
--verbose Returns verbose output which includes additional fields.

The --verbose and --json options are mutually exclusive.
N

--json Returns all fields given with --verbose option in JSON format.
The --verbose and --json options are mutually exclusive.

N

Section V: Vitis Environment Reference Materials
Chapter 30: xbmgmt Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  422Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=422


Using the flash sub-command without any options, as shown below, will return the fields listed in
the following table.

xbmgmt flash --scan

The following table lists the fields returned from xbmgmt --flash scan.

Table 69: xbmgmt flash --scan Field Definition

Field Description
Card Provides the enumerated card Bus Device Function (BDF) for the card in the

following format:
[Bus : Device : Function]

TIP: The xbmgmt  command returns a BDF which includes the management
function on the card. The xbutil scan  command returns a BDF which includes
the user function on the card.

Card type Xilinx card type

Flash type Returns the flash type physically installed on the card. The flash type can be:
• Dual QSPI: Two x4 SPI
• SPI: One x4 SPI
• OSPI: One x8 SPI

Flashable partition running on FPGA Returns details on the flashable partition installed on the card:
• Name of the target platform running on the FPGA
• ID unique identification of the platform bitstream
• Satellite Controller (SC) version number

IMPORTANT! Flashable partition running on FPGA's ID must match the flashable
partitions installed in system or the stack will not operate correctly.

Flashable partitions installed in
system

Returns details on the flashable partition installed on the host system:
• Name of the target platform running installed on the host system
• ID which represents the timestamp of the target platform
• SC version number

Below is an example output of xbmgmt flash --scan for a system with two different cards
installed:

Card [0000:a6:00.0]
    Card type:          u280
    Flash type:         SPI
    Flashable partition running on FPGA:
        xilinx_u280_xdma_201920_1,[ID=0x5da8da6e],[SC=4.3.4]
    Flashable partitions installed in system:
        xilinx_u280_xdma_201920_1,[ID=0x5da8da6e],[SC=4.3.4]
 
Card [0000:73:00.0]
    Card type:          u250

Section V: Vitis Environment Reference Materials
Chapter 30: xbmgmt Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  423Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=423


    Flash type:         SPI
    Flashable partition running on FPGA:
        xilinx_u250_xdma_201830_2,[ID=0x5d14fbe6],[SC=4.3.7]
    Flashable partitions installed in system:
        xilinx_u250_xdma_201830_2,[ID=0x5d14fbe6],[SC=4.3.7]

If a card has been installed for the first time and not previously been flashed, or if the card has
been factory reset the flashable partition running on FPGA will indicate this with the word
GOLDEN within its name as shown in factory_reset.

Using the --verbose option, as shown in the following example, returns additional fields
specified in the following table.

Note: A platform has to be installed on the system to obtain the full card information.

xbmgmt flash --scan --verbose

Table 70: xbmgmt flash --scan --verbose Field Definition

Field Description
Card Name Xilinx provided card name

Card serial number (S/N) Unique card serial number

Configuration mode Returns the configuration mode in which FPGA boots up from a cold
reset. The configuration modes can be:
• Dual QSPI: Two x4 SPI
• QSPI: One x4 SPI
• OSPI: One x8 SPI

Fan presence Represents the presence of a fan on the card.
A – Active cooling. Fan is present on card.
P – Passive cooling. Fan is not present on the card and must be
cooled by host server.

Max power level Maximum power level consumed by the card in Watts. Includes
power from AUX power port. Not all cards have AUX power ports.

MAC address Returns a list of Xilinx assigned MAC addresses for the card.
You are free to use Xilinx assigned MAC address or provide your own.
An address of FF:FF:FF:FF:FF:FF implies this MAC slot has not been
assigned an address.

An example of the xbmgmt flash --scan --verbose output for a system with one card is
given below:

Card [0000:a6:00.0]
    Card type:          u280
    Flash type:         SPI
    Flashable partition running on FPGA:
        xilinx_u280_xdma_201920_1,[ID=0x5da8da6e],[SC=4.3.4]
    Flashable partitions installed in system:
        xilinx_u280_xdma_201920_1,[ID=0x5da8da6e],[SC=4.3.4]
    Card name                   ALVEO U280 PQ
    Card S/N:                   21760394R01L
    Config mode:                7
    Fan presence:               A

Section V: Vitis Environment Reference Materials
Chapter 30: xbmgmt Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  424Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=424


    Max power level:            225W
    MAC address0:               00:0A:35:06:00:0A
    MAC address1:               00:0A:35:06:00:0B
    MAC address2:               FF:FF:FF:FF:FF:FF
    MAC address3:               FF:FF:FF:FF:FF:FF

Using the --json sub-option returns similar information as xbmgmt flash --scan, but in
JSON format. The following shows an example of the generated JSON output for a system with
one card.

{
    "card0": {
        "shellpackage": "xilinx_u280_xdma_201920_1,[ID=0x5da8da6e],
[SC=4.3.4]; ",
        "name": "ALVEO U280 PQ",
        "serial": "21760394R01L",
        "config_mode": "7",
        "fan_presence": "A",
        "max_power": "225W",
        "mac0": "00:0A:35:06:00:0A",
        "mac1": "00:0A:35:06:00:0B",
        "mac2": "FF:FF:FF:FF:FF:FF",
        "mac3": "FF:FF:FF:FF:FF:FF"
    }
}

update

Use the flash --update sub-command to change the flashable partition (target platform) on
the card. It does this by flashing the specified target platform and associated satellite controller
to the configurable ROM on the card. It has the following command line format:

xbmgmt flash --update [--shell <target_platform_name> 
[--id <target_platform_id>]] [--card <bdf] [–force]

The following table lists the available options.

Section V: Vitis Environment Reference Materials
Chapter 30: xbmgmt Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  425Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=425


Table 71:  xbmgmt update Command Sub-options

Option Description Required
--shell
<target_platform_name>

[--id]

Name of the target platform (flashable partition) to be flashed on the card.
The target platform must be installed on the host system prior to
specifying it via the target platform installation package. See the Alveo™
card installation guide for details on downloading and installing the
deployment target platform. Use the xbmgmt flash --scan to list
available target platforms installed on the host system.
If neither the --shell and --card options are specified, all cards will be
flashed with the compatible target platform if available on the host system.
For instance, if your system has U200 and U250 cards installed and both
U200 and U250 target platforms exist on the host system, then both cards
will be flashed with their respective target platforms. If a card's target
platform does not exist on the system, then the card will not be flashed.
If the --shell option is specified, but the --card option is not, then all
cards compatible with the specified target_platform_name will be
flashed. For instance, if your system has two U200 cards installed, then
both cards will be flashed with the specified target_platform_name. If a
card's target platform does not exist on the system, then the card will not
be flashed.
If the --shell option is not specified, but the --card option is specified,
the specified card will be flashed with the compatible target platform if
available on the host system.
If both the --shell and --card options are specified, the specified card
will be flashed with the specified target platform if available on the host
system.
If the flashable partition on the card matches the flashable partition on the
system, a similar message as shown below will be displayed and the card
will not be updated. However, you can force the card to be flashed by using
the --force option described below.

Card [0000:65:00.0]: 
Status: shell is up-to-date 
Card(s) up-to-date and do not need to be flashed.

If the specified target_platform_name is not installed on the host
system, the card will not be updated and you will receive the following
message:

Specified shell not found.

This --id sub-option specifies the ID of the target platform.
Use the xbmgmt flash --scan to obtain the ID of the flashable partition.
If the --id option is not specified, the card will be updated with the latest
released target platform available on the host system.

N

Section V: Vitis Environment Reference Materials
Chapter 30: xbmgmt Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  426Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=426


Table 71:  xbmgmt update Command Sub-options (cont'd)

Option Description Required
--card <bdf> Specifies the accelerator card to be updated as identified by its

Bus:Device:Function (BDF) tag. Use the xbmgmt flash --scan to obtain
the card BDF.
If --card is not specified, then all accelerator cards in the system
compatible with the specified target_platform will be updated.
If neither the --shell and --card options are specified, all cards will be
flashed with the compatible target platform if available on the host system.
For instance, if your system has U200 and U250 cards installed and both
U200 and U250 target platforms exist on the host system, then both cards
will be flashed with their respective target platforms. If a card's target
platform does not exist on the system, then the card will not be flashed.
If the --shell option is specified, but the --card option is not, then all
cards compatible with the specified target_platform_name will be
flashed.
For instance, if your system has two U200 cards installed, then both cards
will be flashed with the specified target_platform_name. If a card's
target platform does not exist on the system, then the card will not be
flashed.
If the --shell option is not specified, but the --card option is specified,
the specified card will be flashed with the compatible target platform if
available on the host system.
If both the --shell and --card options are specified, the specified card
will be flashed with the specified target platform if available on the host
system.
If the BDF is not found, you will receive the following message where <bdf>
is the BDF value entered. Use the xbmgmt flash --scan to list the BDF
values of installed cards.

ERROR: No mgmt PF found for <bdf>

N

--force The force option means "yes" to any prompt from xbmgmt flash --
update command.
For instance, when flashing the card through xbmgmt flash --update, it
will confirm that you wish to perform the update with the following
prompt:

Are you sure you wish to proceed? [y/n]:

The --force option will automatically set the answer to "y" or yes, and
proceed.

N

factory_reset

Use the flash --factory_reset sub-command to restore the flashable partition running on
the FPGA to the original golden image. This command will not change the satellite controller
version. It has the following command line format:

xbmgmt flash --factory_reset [--card <bdf>]

There is only one option and is given in the following table.

Section V: Vitis Environment Reference Materials
Chapter 30: xbmgmt Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  427Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=427


Table 72: xbmgmt factory_reset Command Sub-options

Option Description Required
--card <bdf> Specifies the accelerator card to be factory reset as identified by

its Bus:Device:Function (BDF) tag.
Use the xbmgmt flash --scan to obtain the card BDF.
If --card is not specified, then the card_ID 0 will be reset.
Card_ID is not deterministic and can change after a cold or
warm reboot.

N

After running the xbmgmt flash --factory_reset command, it is necessary to cold-reboot
the system to restore the card to the original golden image.

After a factory reset and cold rebooting, use xbmgmt flash --scan to confirm the flashable
partition running on FPGA has been reverted. The partition will include the word GOLDEN
within its name as shown below:

Card [0000:a6:00.0]
    Card type:          u280
    Flash type:         SPI
    Flashable partition running on FPGA:
        xilinx_u280_GOLDEN_8,[SC=4.3]
    Flashable partitions installed in system:
        xilinx_u280_xdma_201920_1,[ID=0x5da8da6e],[SC=4.3.4]

scan (xbmgmt)
IMPORTANT! This option cannot be used with embedded processor platforms.

The xbmgmt scan command returns a list of all the detected management PCIe functions. Each
item in the list includes the card BDF, target platform name, target platform ID, and management
driver instance number.

TIP: If additional details are needed, use the xbmgmt flash --scan --verbose command.

It has the following command line format. There are no options.

xbmgmt scan

The following table lists the fields returned from xbmgmt scan command.

Section V: Vitis Environment Reference Materials
Chapter 30: xbmgmt Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  428Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=428


Table 73: xbmgmt scan Field Definition

Field Description
BDF Provides the enumerated Bus:Device:Function (BDF) identifier for the

card in the following format:
[Bus:Device:Function]

Flashable partition running on FPGA Details on the flashable partition include:
• Name of the target platform flashed on the FPGA
• Unique ID associated with the target platform.

mgmt Returns the assigned management driver instance.
The instance number can easily find the device node for each function.
On a supported Linux distribution, the device node can be found
at: /dev/xclmgmt<inst>.
In addition, the instance can be useful when mapping the dmesg
information to a specific card.

Below is an example output of xbmgmt scan for a system with three cards installed. Details for
each card are on a separate line:

0000:a6:00.0 xilinx_u280_xdma_201920_1(ts=0x5da8da6e) mgmt(inst=42496)
0000:73:00.0 xilinx_u250_xdma_201830_2(ts=0x5d14fbe6) mgmt(inst=29440)
0000:17:00.0 xilinx_u200_xdma_201830_2(ts=0x5d1211e8) mgmt(inst=5888)

version
IMPORTANT! This option cannot be used with embedded processor platforms.

The version command returns the XRT build version details. It is identical to the xbutil version
command. It has the following command line format. There are no options.

xbmgmt version

The following table lists the fields returned from xbmgmt version command.

Table 74: Version Field Definition

Field Description
XRT Build Version XRT build version

Build Version Branch Build version branch

Build Version Hash Build version hash

Build Version Hash Date Build version branch date

Build Version Date Build version date

XOCL XOCL version

XCLMGMT XCLMGMT version

Section V: Vitis Environment Reference Materials
Chapter 30: xbmgmt Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  429Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=429


The following code is an example output of xbmgmt version for a system with three cards
installed.

      XRT Build Version: 2.3.1301
   Build Version Branch: 2019.2
     Build Version Hash: 192e706aea53163a04c574f9b3fe9ed76b6ca471
Build Version Hash Date: Thu, 24 Oct 2019 19:27:30 -0700
     Build Version Date: Thu, 24 Oct 2019 20:04:29 -0700
                   XOCL: 2.3.1301,192e706aea53163a04c574f9b3fe9ed76b6ca471
                XCLMGMT: 2.3.1301,192e706aea53163a04c574f9b3fe9ed76b6ca471

To return additional card details, use xbmgmt flash --scan.

Section V: Vitis Environment Reference Materials
Chapter 30: xbmgmt Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  430Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=430


Chapter 31

xclbinutil Utility
The xclbinutil utility can create, modify, and report xclbin content information.

The available command options are shown in the following table.

Table 75: xclbinutil Commands

Option Description
-h [ --help ] Print help messages.
-i [ --input ]<arg> Input file name. Reads xclbin into memory.
-o [ --output ]<arg> Output file name. Writes in memory xclbin image to a file.
-v [ --verbose ] Display verbose/debug information
-q [ --quiet ] Minimize reporting information.
--migrate-forward Migrate the xclbin archive forward to the new binary format.
--remove-section<arg> Section name to remove.
--add-section<arg> Section name to add. Format: <section>:<format>:<file>

--dump-section<arg> Section to dump. Format: <section>:<format>:<file>

--replace-section<arg> Section to replace.
--key-value<arg> Key value pairs. Format: [USER|SYS]:<key>:<value>

--remove-key<arg> Removes the given user key from the xclbin archive.
--add-signature<arg> Adds a user defined signature to the given xclbin image.
--remove-signature Removes the signature from the xclbin image.
--get-signature Returns the user defined signature (if set) of the xclbin image.
--info Report accelerator binary content. Including: generation and packaging data,

kernel signatures, connectivity, clocks, sections, etc
--list-names List all possible section names (standalone option).
--version Version of this executable.
--force Forces a file overwrite.

The following are various use examples of the tool.

• Reporting xclbin information: xclbinutil --info --input
binary_container_1.xclbin

• Extracting the bitstream image: xclbinutil --dump-section
BITSTREAM:RAW:bitstream.bit --input binary_container_1.xclbin

Section V: Vitis Environment Reference Materials
Chapter 31: xclbinutil Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  431Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=431


• Extracting the build metadata: xclbinutil --dump-section
BUILD_METADATA:HTML:buildMetadata.json --input
binary_container_1.xclbin

• Removing a section: xclbinutil --remove-section BITSTREAM --input
binary_container_1.xclbin --output binary_container_modified.xclbin

For most users, details about the contents and how the xclbin was created is desired. This
information can be obtained through the --info option and reports information on the
xclbin, hardware platform, clocks, memory configuration, kernel, and how the xclbin was
generated.

The output of the xclbinutil command using the --info option is shown below divided into
sections.

xclbinutil -i binary_container_1.xclbin --info

xclbin Information
   Generated by:           v++ (2020.1) on Mon Apr 13 20:19:40 MDT 2020
   Version:                2.6.436
   Kernels:                CopyKernel
   Signature:
   Content:                Bitstream
   UUID (xclbin):          d081de98-3fd3-4e9b-bab3-108b42c73101
   UUID (IINTF):           862c7020a250293e32036f19956669e5
   Sections:               DEBUG_IP_LAYOUT, BITSTREAM, MEM_TOPOLOGY, 
IP_LAYOUT,
                           CONNECTIVITY, CLOCK_FREQ_TOPOLOGY, 
BUILD_METADATA,
                           EMBEDDED_METADATA, SYSTEM_METADATA, 
PARTITION_METADATA

Hardware Platform Information
Vendor:                 xilinx
Board:                  u200
Name:                   xdma
Version:                201830.1
Generated Version:      Vivado 2018.3 (SW Build: 2388429)
Created:                Wed Nov 14 20:06:10 2018
FPGA Device:            xcu200
Board Vendor:           xilinx.com

Section V: Vitis Environment Reference Materials
Chapter 31: xclbinutil Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  432Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=432


Board Name:             xilinx.com:au200:1.0
Board Part:             xilinx.com:au200:part0:1.0
Platform VBNV:          xilinx_u200_xdma_201830_1
Static UUID:            00194bb3-707b-49c4-911e-a66899000b6b
Feature ROM TimeStamp:  1542252769

Clocks
Reports the maximum kernel clock frequencies available. Both the clock names and clock indexes
are provided. The clock indexes are identical to those reported in platforminfo Utility.

Name:      DATA_CLK
Index:     0
Type:      DATA
Frequency: 300 MHz

Name:      KERNEL_CLK
Index:     1
Type:      KERNEL
Frequency: 500 MHz

Memory Configuration
Name:         bank0
Index:        0
Type:         MEM_DDR4
Base Address: 0x0
Address Size: 0x400000000
Bank Used:    No

Name:         bank1
Index:        1
Type:         MEM_DDR4
Base Address: 0x400000000
Address Size: 0x400000000
Bank Used:    Yes

Name:         bank2
Index:        2
Type:         MEM_DDR4
Base Address: 0x800000000
Address Size: 0x400000000
Bank Used:    No

Name:         bank3
Index:        3
Type:         MEM_DDR4
Base Address: 0xc00000000
Address Size: 0x400000000
Bank Used:    No

Name:         PLRAM[0]

Section V: Vitis Environment Reference Materials
Chapter 31: xclbinutil Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  433Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=433


Index:        4
Type:         MEM_DDR4
Base Address: 0x1000000000
Address Size: 0x20000
Bank Used:    No

Name:         PLRAM[1]
Index:        5
Type:         MEM_DRAM
Base Address: 0x1000020000
Address Size: 0x20000
Bank Used:    No

Name:         PLRAM[2]
Index:        6
Type:         MEM_DRAM
Base Address: 0x1000040000
Address Size: 0x20000
Bank Used:    No

Kernel Information
For each kernel in the xclbin, the function definition, ports, and instance information is
reported.

The following is an example of the reported function definition.

Definition
----------
   Signature: krnl_vadd (int* a, int* b, int* c, 
             int const  n_elements)

The following is an example of the reported ports.

Ports
-----
   Port:          M_AXI_GMEM
   Mode:          master
   Range (bytes): 0xFFFFFFFF
   Data Width:    32 bits
   Port Type:     addressable

   Port:          M_AXI_GMEM1
   Mode:          master
   Range (bytes): 0xFFFFFFFF
   Data Width:    32 bits
   Port Type:     addressable

   Port:          S_AXI_CONTROL
   Mode:          slave
   Range (bytes): 0x1000
   Data Width:    32 bits
   Port Type:     addressable

Section V: Vitis Environment Reference Materials
Chapter 31: xclbinutil Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  434Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=434


The following is an example of the reported instance(s) of the kernel.

Instance:        krnl_vadd_1
   Base Address: 0x0

   Argument:          a
   Register Offset:   0x10
   Port:              M_AXI_GMEM
   Memory:            bank1 (MEM_DDR4)

   Argument:          b
   Register Offset:   0x1C
   Port:              M_AXI_GMEM
   Memory:            bank1 (MEM_DDR4)

   Argument:          c
   Register Offset:   0x28
   Port:              M_AXI_GMEM1
   Memory:            bank1 (MEM_DDR4)

   Argument:          n_elements
   Register Offset:   0x34
   Port:              S_AXI_CONTROL
   Memory:            <not applicable>

Tool Generation Information
The utility also reports the v++ command line used to generate the xclbin. The Command Line
section gives the actual v++ command line used, while the Options section displays each option
used in the command line, but in a more readable format with one option per line.

Generated By
------------
Command:       v++
Version:       2018.3 - Tue Nov 20 19:42:42 MST 2018 (SW BUILD: 2394611)
Command Line:  v++ -t hw_emu --platform /opt/xilinx/platforms/
xilinx_u200_xdma_201830_1/xilinx_
               u200_xdma_201830_1.xpfm --save-temps -l --connectivity.nk 
krnl_vadd:1
               -g --messageDb binary_container_1.mdb 
               --temp_dir binary_container_1 
               --report_dir binary_container_1/reports --log_dir 
binary_container_1/logs 
                  --remote_ip_cache /wrk/tutorials/ip_cache 
                  -obinary_container_1.xclbin binary_container_1/
krnl_vadd.o 
Options:       -t hw_emu
               --platform /opt/xilinx/platforms/xilinx_u200_xdma_201830_1/
xilinx_u200_xdma_201830_1.xpfm
               --save-temps
               -l
               --connectivity.nk krnl_vadd:1
               -g
               --messageDb binary_container_1.mdb
               --temp_dir binary_container_1

Section V: Vitis Environment Reference Materials
Chapter 31: xclbinutil Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  435Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=435


               --report_dir binary_container_1/reports
               --log_dir binary_container_1/logs
               --remote_ip_cache /wrk/tutorials/ip_cache
            -obinary_container_1.xclbin binary_container_1/krnl_vadd.o 
============================================================================
==
User Added Key Value Pairs
--------------------------
   <empty>
============================================================================
==

Section V: Vitis Environment Reference Materials
Chapter 31: xclbinutil Utility

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  436Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=436


Chapter 32

xrt.ini File
The Xilinx runtime (XRT) library uses various control parameters to specify debugging, profiling,
and message logging when running the host application and kernel execution. These control
parameters are specified in a runtime initialization file, xrt.ini and used to configure features
of XRT at start-up.

If you are a command line user, the xrt.ini file needs to be created manually and saved to the
same directory as the host executable. The runtime library checks if xrt.ini exists in the same
directory as the host executable and automatically reads the file to configure the runtime.

TIP: The Vitis IDE creates the xrt.ini  file automatically based on your run configuration and saves it
with the host executable.

Runtime Initialization File Format

The xrt.ini file is a simple text file with groups of keys and their values. Any line beginning
with a semicolon (;) or a hash (#) is a comment. The group names, keys, and key values are all case
sensitive.

The following is an example xrt.ini file that enables the timeline trace feature, and directs the
runtime log messages to the Console view.

#Start of Debug group 
[Debug] 
timeline_trace = true

#Start of Runtime group 
[Runtime] 
runtime_log = console

There are three groups of initialization keys:

• Runtime

• Debug

• Emulation

The following tables list all supported keys for each group, the supported values for each key, and
a short description of the purpose of the key.

Section V: Vitis Environment Reference Materials
Chapter 32: xrt.ini File

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  437Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=437


Table 76: Runtime Group

Key Valid Values Description
api_checks [true|false] Enables or disables OpenCL API checks.

• true: Enable. This is the default value.

• false: Disable.

cpu_affinity {N,N,...} Pins all runtime threads to specified CPUs.
Example:

cpu_affinity = {4,5,6}

ert_polling [true|false] Specifies the use of polling as a mechanism
to interrupt compute unit (CU) processing
on the acceleration platform. The default
value is false, using existing interrupt
signals on the platform rather than polling.

exclusive_cu_context [true|false] This allows the host application to direct
OpenCL to acquire exclusive CU access, so
that low-level AXI read/write (xclRegRead
and xclRegWrite) can be used for regular
kernels, as well as free-running kernels.

polling_throttle <value> Specifies the time interval in microseconds
that the runtime library polls the device
status when ert_polling is enabled. The
default value is 0.

runtime_log [null | console | syslog |
<filename>]

Specifies where the runtime logs are
printed
• null: Do not print any logs. This is the

default value.
• console: Print logs to stdout

• syslog: Print logs to Linux syslog.

• <filename>: Print logs to the specified
file. For example,
runtime_log=my_run.log.

verbosity [0 | 1 | 2 | 3] Verbosity of the log messages. The default
value is 0.

Table 77: Debug Group

Key Valid Values Description
app_debug [true|false] Enables xprint and xstatus command

during debugging with GDB.
• true: Enable.

• false: Disable. This is the default
value.

Section V: Vitis Environment Reference Materials
Chapter 32: xrt.ini File

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  438Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=438


Table 77: Debug Group (cont'd)

Key Valid Values Description
continuous_trace [on|off] Enables the continuous offload of device

trace data while the application is running.
The trace file will be written to disk
continuously, so in the event of a crash,
some trace data is available to help debug
the application.

Note: The continuous trace feature writes
to the memory type specified by the --
trace_memory option described in Vitis
Compiler General Options. Continuous
trace provides better results when the trace
memory is not specified as FIFO.

continuous_trace_interval_m
s

<int> Specifies the interval in milliseconds to read
the trace buffers. This is useful when trace
data is captured in FIFO and you want to
increase the rate of dumping data to the
disk to avoid overflowing the buffers and
losing data. The default interval is 1 ms.

data_transfer_trace=<arg> [coarse|fine|off] Enables device-level AXI transfers trace.

• coarse: Show CU transfer activity from
beginning of first transfer to end of last
transfer (before compute unit transfer
ends).

• fine: Show all AXI-level burst data
transfers.

• off: Turn off reading and reporting of
device-level trace during runtime. This
is the default value.

device_profile [true|false] Enables or disables device profiling.
• true: Enable.

• false: Disable. This is the default
value.

lop_trace [true|false] Enables or disables low overhead profiling.
Low overhead profiling produces a reduced
timeline_trace, with only host side data, but
eliminates the overhead of device side
profiling, significantly reducing the impact
on performance.
• true: Enable.

• false: Disable. This is the default
value.

Note: lop_trace=true should not be
specified with profile=true, or you will
not get low overhead profiling. Also, the
lop_trace does not require compilation or
linking with the --profile_kernel option
as defined in Vitis Compiler General
Options.

Section V: Vitis Environment Reference Materials
Chapter 32: xrt.ini File

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  439Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=439


Table 77: Debug Group (cont'd)

Key Valid Values Description
power_profile [true|false] Enables or disables power profiling for the

device.
• true: Enable.

• false: Disable. This is the default
value.

When this option is enabled, power data is
captured from the accelerator card during
the application runtime. The power profile
reports the avg/min/max power for each
rail on the card. The logged data is
available to view in Vitis analyzer.

profile [true|false] Enables or disables OpenCL code profiling.
• true: Enable.

• false: Disable. This is the default
value.

When this option is specified as true, the
runtime enables basic profile monitoring.
Without any additional options, this
enables the host runtime logging profile
summary. However, when false, no profile
monitoring is performed at all.

stall_trace=<arg> [dataflow|memory|pipe|all|off] Specifies what types of stalls to capture and
report in the timeline trace. The default is
off.

Note: Enabling stall tracing can often fill the
trace buffer, which results in incomplete
and potentially corrupt timeline traces. This
can be avoided by setting
stall_trace=off.

• off: Turn off any stall trace information
gathering.

• all: Record all stall trace information.

• dataflow: Intra-kernel streams (for
example, writing to full FIFO between
dataflow blocks).

• memory: External memory stalls (for
example, AXI4 read from the DDR.

• pipe: Inter-kernel pipe for OpenCL
kernels (for example, writing to full pipe
between kernels).

Section V: Vitis Environment Reference Materials
Chapter 32: xrt.ini File

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  440Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=440


Table 77: Debug Group (cont'd)

Key Valid Values Description
timeline_trace [true|false] Enables or disables profile timeline trace

• true: Enable.

• false: Disable. This is the default
value.

This option will enable data gathering for
the timeline trace. However, without
adding Acceleration Monitors and AXI
Performance Monitor IP into the kernels,
the timeline will only show host
information. At a minimum, to get compute
unit start and end times in the timeline, the
CU needs to be built with --
profile_kernel exec as described in 
Vitis Compiler Command.

trace_buffer_size <value{K|M|G}> Specifies the size of the memory allocated
to capture trace data. This helps to ensure
you can capture enough trace data. The
value is specified as the amount of memory
to allocate, for example, 64K, 200M, 1G.

Note: This buffer size relates to the --
trace_memory option as explained in Vitis
Compiler General Options.

Table 78: Emulation Group

Key Valid Values Description
aliveness_message_interval Any integer Specifies the interval in seconds that

aliveness messages need to be printed. The
default is 300.

debug_mode [off|batch|gui|gdb] Specifies how the waveform is saved and
displayed during emulation.
• off: Do not launch simulator waveform

GUI, and do not save wdb file. This is the
default value.

• batch: Do not launch simulator
waveform GUI, but save wdb file

• gui: Launch simulator waveform GUI,
and save wdb file

• gdb: Launch simulator in gdb mode to
debug the kernel using gdb. This mode
does not have waveform support and
does not save any wdb file either.

Note: The kernel needs to be compiled with
debug enabled (v++ -g) for the waveform
to be saved and displayed in the simulator
GUI.

Section V: Vitis Environment Reference Materials
Chapter 32: xrt.ini File

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  441Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=441


Table 78: Emulation Group (cont'd)

Key Valid Values Description
print_infos_in_console [true|false] Controls the printing of emulation info

messages to users console. Emulation info
messages are always logged into a file
called emulation_debug.log
• true: Print in users console. This is the

default value.
• false: Do not print in user console.

print_warnings_in_console [true|false] Controls the printing emulation warning
messages to users console. Emulation
warning messages are always logged into a
file called emulation_debug.log.
• true: Print in users console. This is the

default value.
• false: Do not print in user console.

print_errors_in_console [true|false] Controls printing emulation error
messages in users console. Emulation error
messages are always logged into the
emulation_debug.log file.
• true: Print in users console. This is the

default value.
• false: Do not print in user console.

user_pre_sim_script Path to Tcl file For the first run, run simulation in GUI
mode. Add signals that you want to add.
Copy the commands from the Tcl console
and save into a Tcl script.
For the next run, pass the Tcl script in batch
mode.

user_post_sim_script Path to Tcl file Any post operations can be specified in the
Tcl and pass to the switch. All the command
provided in the Tcl will get executed after
simulation is completed.

xtlm_aximm_log [true|false] Enables the XTLM AXI4 Memory Map
transaction logging at runtime and you
could see all the transactions in the
xsc_report.log file.

xtlm_axis_log [true|false] Enables the XTLM AXI4-Stream transaction
logging at runtime and you could see all
the transactions in the xsc_report.log
file.

timeout_scale na/ms/sec/min Timeout support for clPollStream API in
emulation. Provides a scale for the timeout
specified in clPollStream API. The
timeout specified in the code is specified in
ms, and might not work for emulation.
Therefore use the timeout_scale to map
ms to another scale if needed for
emulation.

IMPORTANT! Timeout is not enabled
in emulation by default. Use this
option to enable clPollStream
timeout.

Section V: Vitis Environment Reference Materials
Chapter 32: xrt.ini File

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  442Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=442


Chapter 33

HLS Pragmas
Optimizations in Vitis HLS

In the Vitis software platform, a kernel defined in the C/C++ language, or OpenCL™ C, must be
compiled into the register transfer level (RTL) that can be implemented into the programmable
logic of a Xilinx device. The v++ compiler calls the Vitis High-Level Synthesis (HLS) tool to
synthesize the RTL code from the kernel source code.

The HLS tool is intended to work with the Vitis IDE project without interaction. However, the
HLS tool also provides pragmas that can be used to optimize the design, reduce latency, improve
throughput performance, and reduce area and device resource usage of the resulting RTL code.
These pragmas can be added directly to the source code for the kernel.

The HLS pragmas include the optimization types specified in the following table.

For detailed pragma information, refer to the Vitis HLS Flow.

Table 79: Vitis HLS Pragmas by Type

Type Attributes
Kernel Optimization • pragma HLS aggregate

• pragma HLS bind_op
• pragma HLS bind_storage
• pragma HLS expression_balance
• pragma HLS latency
• pragma HLS reset
• pragma HLS top

Function Inlining • pragma HLS inline

Interface Synthesis • pragma HLS interface

Task-level Pipeline • pragma HLS dataflow
• pragma HLS shared
• pragma HLS stream

Pipeline • pragma HLS pipeline
• pragma HLS occurence

Loop Unrolling • pragma HLS unroll
• pragma HLS dependence

Section V: Vitis Environment Reference Materials
Chapter 33: HLS Pragmas

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  443Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=irn1582730075765.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=uhk1586265569642
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=ttl1584844636775
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=chr1584844747152
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=zrg1504034364964
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=rym1504034365159
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=exs1504034365334
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=del1504034365683
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=jka1504034359550
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=jit1504034365862
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=zof1504034359187
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=ayi1584845007354
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=ylh1504034366220
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=fde1504034360078
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=zah1504034366392
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=uyd1504034366571
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=sxx1504034358866
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=443


Table 79: Vitis HLS Pragmas by Type (cont'd)

Type Attributes
Loop Optimization • pragma HLS loop_flatten

• pragma HLS loop_merge
• pragma HLS loop_tripcount

Array Optimization • pragma HLS array_partition
• pragma HLS array_reshape

Structure Packing • pragma HLS aggregate
• pragma HLS dataflow

Section V: Vitis Environment Reference Materials
Chapter 33: HLS Pragmas

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  444Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=igd1504034366745
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=rzx1504034366923
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=sty1504034367099
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=gle1504034361378
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=mrl1504034361747
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=uhk1586265569642
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=zof1504034359187
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=444


Chapter 34

OpenCL Attributes
This section describes OpenCL™ attributes that can be added to source code to assist system
optimization by the Vitis core development kit, and Vitis HLS tool synthesis.

The Vitis core development kit provides OpenCL attributes to optimize your code for data
movement and kernel performance. The goal of data movement optimization is to maximize the
system level data throughput by maximizing interface bandwidth usage and DDR bandwidth
usage. The goal of kernel computation optimization is to create processing logic that can
consume all the data as soon as they arrive at kernel interfaces. This is generally achieved by
expanding the processing code to match the data path with techniques, such as function inlining
and pipelining, loop unrolling, array partitioning, dataflowing, and so on.

The following table includes the OpenCL attributes are specified by type.

Table 80: OpenCL Attributes by Type

Type Attributes
Kernel Optimization • reqd_work_group_size

• vec_type_hint
• work_group_size_hint
• xcl_latency
• xcl_max_work_group_size
• xcl_zero_global_work_offset

Function Inlining • always_inline

Task-level Pipeline • xcl_dataflow
• xcl_reqd_pipe_depth

Pipeline • xcl_pipeline_loop
• xcl_pipeline_workitems

Loop Optimization • opencl_unroll_hint
• xcl_loop_tripcount
• xcl_pipeline_loop

Array Optimization • xcl_array_partition
• xcl_array_reshape

Note: Array variables only accept a single array optimization attribute.

TIP: The Vitis compiler also supports many of the standard attributes supported by gcc, such as:

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  445Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=445


• ALWAYS_INLINE
• NOINLINE
• UNROLL
• NOUNROLL

always_inline
Description

The ALWAYS_INLINE attribute indicates that a function must be inlined. This attribute is a
standard feature of GCC, and a standard feature of the Vitis compiler.

TIP: The NOINLINE attribute is also a standard feature of GCC, and is also supported by the Vitis compiler.

This attribute enables a compiler optimization to have a function inlined into the calling function.
The inlined function is dissolved and no longer appears as a separate level of hierarchy in the
RTL.

In some cases, inlining a function allows operations within the function to be shared and
optimized more effectively with surrounding operations in the calling function. However, an
inlined function can no longer be shared with other functions, so the logic might be duplicated
between the inlined function and a separate instance of the function which can be more broadly
shared. While this can improve performance, this will also increase the area required for
implementing the RTL.

For OpenCL kernels, the Vitis compiler uses its own rules to inline or not inline a function. To
directly control inlining functions, use the ALWAYS_INLINE or NOINLINE attributes.

By default, inlining is only performed on the next level of function hierarchy, not sub-functions.

IMPORTANT! When used with the XCL_DATAFLOW attribute, the compiler will ignore the
ALWAYS_INLINE attribute and not inline the function.

Syntax

Place the attribute in the OpenCL API source before the function definition to always have it
inlined whenever the function is called.

__attribute__((always_inline))

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  446Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=446


Examples

This example adds the ALWAYS_INLINE attribute to function foo:

__attribute__((always_inline))
  void foo ( a, b, c, d ) {
  ...
}

This example prevents the inlining of the function foo:

__attribute__((noinline))
  void foo ( a, b, c, d ) {
  ...
}

See Also

• https://gcc.gnu.org

opencl_unroll_hint
Description

IMPORTANT! This is a compiler hint which the compiler can ignore.

Loop unrolling is an optimization technique available in the Vitis compiler. The purpose of the
loop unroll optimization is to expose concurrency to the compiler. This newly exposed
concurrency reduces latency and improves performance, but also consumes more FPGA fabric
resources.

The OPENCL_UNROLL_HINT attribute is part of the OpenCL Specification, and specifies that
loops (for, while, do) can be unrolled by the Vitis compiler. See Loop Unrolling for more
information.

The OPENCL_UNROLL_HINT attribute qualifier must appear immediately before the loop to be
affected. You can use this attribute to specify full unrolling of the loop, partial unrolling by a
specified amount, or to disable unrolling of the loop.

Syntax

Place the attribute in the OpenCL source before the loop definition:

__attribute__((opencl_unroll_hint(<n>)))

Where:

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  447Send Feedback

https://gcc.gnu.org
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=447


• <n> is an optional loop unrolling factor and must be a positive integer, or compile time
constant expression. An unroll factor of 1 disables unrolling.

TIP: If <n> is not specified, the compiler automatically determines the unrolling factor for the loop.

Example 1

The following example unrolls the for loop by a factor of 2. This results in two parallel loop
iterations instead of four sequential iterations for the compute unit to complete the operation.

__attribute__((opencl_unroll_hint(2)))
for(int i = 0; i < LENGTH; i++) {
bufc[i] = bufa[i] * bufb[i];
}

Conceptually the compiler transforms the loop above to the following code.

for(int i = 0; i < LENGTH; i+=2) {
bufc[i] = bufa[i] * bufb[i];
bufc[i+1] = bufa[i+1] * bufb[i+1];
}

See Also

• https://www.khronos.org/

• The OpenCL C Specification

reqd_work_group_size
Description

When OpenCL API kernels are submitted for execution on an OpenCL device, they execute
within an index space, called an ND range, which can have 1, 2, or 3 dimensions. This is called the
global size in the OpenCL API. The work-group size defines the amount of the ND range that can
be processed by a single invocation of a kernel compute unit (CU). The work-group size is also
called the local size in the OpenCL API. The OpenCL compiler can determine the work-group size
based on the properties of the kernel and selected device. After the work-group size (local size) is
determined, the ND range (global size) is divided automatically into work-groups, and the work-
groups are scheduled for execution on the device.

Although the OpenCL compiler can define the work-group size, the specification of the
REQD_WORK_GROUP_SIZE attribute on the kernel to define the work-group size is highly
recommended for FPGA implementations of the kernel. The attribute is recommended for
performance optimization during the generation of the custom logic for a kernel.

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  448Send Feedback

https://www.khronos.org/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=448


TIP: In the case of an FPGA implementation, the specification of the REQD_WORK_GROUP_SIZE attribute
is highly recommended as it can be used for performance optimization during the generation of the custom
logic for a kernel.

OpenCL kernel functions are executed exactly one time for each point in the ND range index
space. This unit of work for each point in the ND range is called a work-item. Work-items are
organized into work-groups, which are the unit of work scheduled onto compute units. The
optional REQD_WORK_GROUP_SIZE attribute defines the work-group size of a compute unit
that must be used as the local_work_size argument to clEnqueueNDRangeKernel. This
allows the compiler to optimize the generated code appropriately for this kernel.

Syntax

Place this attribute before the kernel definition, or before the primary function specified for the
kernel.

__attribute__((reqd_work_group_size(<X>, <Y>, <Z>)))

Where:

• <X>, <Y>, <Z>: Specifies the ND range of the kernel. This represents each dimension of a
three dimensional matrix specifying the size of the work-group for the kernel.

Examples

The following OpenCL C kernel code shows a vector addition design where two arrays of data
are summed into a third array. The required size of the work-group is 16x1x1. This kernel will
execute 16 times to produce a valid result.

#include <clc.h>
// For VHLS OpenCL C kernels, the full work group is synthesized
__attribute__ ((reqd_work_group_size(16, 1, 1)))
__kernel void 
vadd(__global int* a,
__global int* b,
__global int* c)
{
int idx = get_global_id(0);
c[idx] = a[idx] + b[idx];
}

See Also

• https://www.khronos.org/

• The OpenCL C Specification

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  449Send Feedback

https://www.khronos.org/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=449


vec_type_hint
Description

IMPORTANT! This is a compiler hint which the compiler can ignore.

The optional __attribute__((vec_type_hint(<type>))) is part of the OpenCL
Language Specification, and hints to the OpenCL compiler representing the computational width
of the kernel, providing a basis for calculating processor bandwidth usage when the compiler is
looking to auto-vectorize the code.

By default, the kernel is assumed to have the __attribute__((vec_type_hint(int)))
qualifier. This lets you specify a different vectorization type.

Implicit in autovectorization is the assumption that any libraries called from the kernel must be
re-compilable at runtime to handle cases where the compiler decides to merge or separate work
items. This means that these libraries can never be hard-coded binaries or that hard-coded
binaries must be accompanied either by source or some re-targetable intermediate
representation. This might be a code security question for some.

Syntax

Place this attribute before the kernel definition, or before the primary function specified for the
kernel.

__attribute__((vec_type_hint(<type>)))

Where:

• <type>: is one of the built-in vector types listed in the following table, or the constituent
scalar element types.

Note: When not specified, the kernel is assumed to have an INT type.

Table 81: Vector Types

Type Description

char<n> A vector of <n> 8-bit signed two’s complement integer values.

uchar<n> A vector of <n> 8-bit unsigned integer values.

short<n> A vector of <n> 16-bit signed two’s complement integer values.

ushort<n> A vector of <n> 16-bit unsigned integer values.

int<n> A vector of <n> 32-bit signed two’s complement integer values.

uint<n> A vector of <n> 32-bit unsigned integer values.

long<n> A vector of <n> 64-bit signed two’s complement integer values.

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  450Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=450


Table 81: Vector Types (cont'd)

Type Description

ulong<n> A vector of <n> 64-bit unsigned integer values.

float<n> A vector of <n> 32-bit floating-point values.

double<n> A vector of <n> 64-bit floating-point values.

Note: <n> is assumed to be 1 when not specified. The vector data type names defined above where <n> is
any value other than 2, 3, 4, 8 and 16, are also reserved. Therefore, < n> can only be specified as 2,3,4,8,
and 16.

Examples

The following example autovectorizes assuming double-wide integer as the basic computation
width.

#include <clc.h>
// For VHLS OpenCL C kernels, the full work group is synthesized
__attribute__((vec_type_hint(double)))
__attribute__ ((reqd_work_group_size(16, 1, 1)))
__kernel void 
...

See Also

• https://www.khronos.org/

• The OpenCL C Specification

work_group_size_hint
Description

IMPORTANT! This is a compiler hint, which the compiler might ignore.

The work-group size in the OpenCL API standard defines the size of the ND range space that can
be handled by a single invocation of a kernel compute unit. When OpenCL kernels are submitted
for execution on an OpenCL device, they execute within an index space, called an ND range,
which can have 1, 2, or 3 dimensions.

OpenCL kernel functions are executed exactly one time for each point in the ND range index
space. This unit of work for each point in the ND range is called a work-item. Unlike for loops in
C, where loop iterations are executed sequentially and in-order, an OpenCL runtime and device is
free to execute work-items in parallel and in any order.

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  451Send Feedback

https://www.khronos.org/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=451


Work-items are organized into work-groups, which are the unit of work scheduled onto compute
units. The optional WORK_GROUP_SIZE_HINT attribute is part of the OpenCL Language
Specification, and is a hint to the compiler that indicates the work-group size value most likely to
be specified by the local_work_size argument to clEnqueueNDRangeKernel. This allows
the compiler to optimize the generated code according to the expected value.

TIP: In the case of an FPGA implementation, the specification of the REQD_WORK_GROUP_SIZE
attribute, instead of the WORK_GROUP_SIZE_HINT is highly recommended because it can be used for
performance optimization during the generation of the custom logic for a kernel.

Syntax

Place this attribute before the kernel definition, or before the primary function specified for the
kernel:

__attribute__((work_group_size_hint(<X>, <Y>, <Z>)))

Where:

• <X>, <Y>, <Z>: Specifies the ND range of the kernel. This represents each dimension of a
three dimensional matrix specifying the size of the work-group for the kernel.

Examples

The following example is a hint to the compiler that the kernel will most likely be executed with a
work-group size of 1.

__attribute__((work_group_size_hint(1, 1, 1)))
__kernel void
...

See Also

• https://www.khronos.org/

• The OpenCL C Specification

xcl_array_partition
Description

IMPORTANT! Array variables only accept one attribute. While XCL_ARRAY_PARTITION does support
multi-dimensional arrays, you can only reshape one dimension of the array with a single attribute.

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  452Send Feedback

https://www.khronos.org/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=452


An advantage of using the FPGA over other compute devices for OpenCL programs is the ability
for the application programmer to customize the memory architecture all throughout the system
and into the compute unit. By default, the Vitis compiler generates a memory architecture within
the compute unit that maximizes local and private memory bandwidth based on static code
analysis of the kernel code. Further optimization of these memories is possible based on
attributes in the kernel source code, which can be used to specify physical layouts and
implementations of local and private memories. The attribute in the Vitis compiler to control the
physical layout of memories in a compute unit is array_partition.

For one-dimensional arrays, the XCL_ARRAY_PARTITION attribute implements an array declared
within kernel code as multiple physical memories instead of a single physical memory. The
selection of which partitioning scheme to use depends on the specific application and its
performance goals. The array partitioning schemes available in the Vitis compiler are cyclic,
block, and complete.

Syntax

Place the attribute with the definition of the array variable.

__attribute__((xcl_array_partition(<type>, <factor>, 
<dimension>)))

Where:

• <type>: Specifies one of the following partition types:

○ cyclic: Cyclic partitioning is the implementation of an array as a set of smaller physical
memories that can be accessed simultaneously by the logic in the compute unit. The array
is partitioned cyclically by putting one element into each memory before coming back to
the first memory to repeat the cycle until the array is fully partitioned.

○ block: Block partitioning is the physical implementation of an array as a set of smaller
memories that can be accessed simultaneously by the logic inside the compute unit. In this
case, each memory block is filled with elements from the array before moving on to the
next memory.

○ complete: Complete partitioning decomposes the array into individual elements. For a
one-dimensional array, this corresponds to resolving a memory into individual registers.
The default <type> is complete.

• <factor>: For cyclic type partitioning, the <factor> specifies how many physical memories
to partition the original array into in the kernel code. For block type partitioning, the
<factor> specifies the number of elements from the original array to store in each physical
memory.

IMPORTANT! For complete  type partitioning, the <factor>> is not specified.

• <dimension>: Specifies which array dimension to partition. Specified as an integer from 1 to
<N>. Vitis core development kit supports arrays of N dimensions and can partition the array
on any single dimension.

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  453Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=453


Example 1

For example, consider the following array declaration.

int buffer[16];

The integer array, named buffer, stores 16 values that are 32-bits wide each. Cyclic partitioning
can be applied to this array with the following declaration.

int buffer[16] __attribute__((xcl_array_partition(cyclic,4,1)));

In this example, the cyclic <partition_type> attribute tells the Vitis compiler to distribute the
contents of the array among four physical memories. This attribute increases the immediate
memory bandwidth for operations accessing the array buffer by a factor of four.

All arrays inside a compute unit in the context of the Vitis core development kit are capable of
sustaining a maximum of two concurrent accesses. By dividing the original array in the code into
four physical memories, the resulting compute unit can sustain a maximum of eight concurrent
accesses to the array buffer.

Example 2

Using the same integer array as found in Example 1, block partitioning can be applied to the array
with the following declaration.

int buffer[16] __attribute__((xcl_array_partition(block,4,1)));

Because the size of the block is four, the Vitis compiler will generate four physical memories,
sequentially filling each memory with data from the array.

Example 3

Using the same integer array as found in Example 1, complete partitioning can be applied to the
array with the following declaration.

int buffer[16] __attribute__((xcl_array_partition(complete, 1)));

In this example, the array is completely partitioned into distributed RAM, or 16 independent
registers in the programmable logic of the kernel. Because complete is the default, the same
effect can also be accomplished with the following declaration.

int buffer[16] __attribute__((xcl_array_partition));

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  454Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=454


While this creates an implementation with the highest possible memory bandwidth, it is not
suited to all applications. The way in which data is accessed by the kernel code through either
constant or data dependent indexes affects the amount of supporting logic that the Vitis
compiler has to build around each register to ensure functional equivalence with the usage in the
original code. As a general best practice guideline for the Vitis core development kit, the
complete partitioning attribute is best suited for arrays in which at least one dimension of the
array is accessed through the use of constant indexes.

See Also

• xcl_array_reshape

• pragma HLS array_partition

• Vitis HLS Flow

xcl_array_reshape
Description

IMPORTANT! Array variables only accept one attribute. While the XCL_ARRAY_RESHAPE attribute does
support multi-dimensional arrays, you can only reshape one dimension of the array with a single attribute.

This attribute combines array partitioning with vertical array mapping.

The XCL_ARRAY_RESHAPE attribute combines the effect of XCL_ARRAY_PARTITION, breaking
an array into smaller arrays, and concatenating elements of arrays by increasing bit-widths. This
reduces the number of block RAM consumed while providing parallel access to the data. This
attribute creates a new array with fewer elements but with greater bit-width, allowing more data
to be accessed in a single clock cycle.

Given the following code:

void foo (...) {
int array1[N] __attribute__((xcl_array_reshape(block, 2, 1)));
int array2[N] __attribute__((xcl_array_reshape(cycle, 2, 1)));
int array3[N] __attribute__((xcl_array_reshape(complete, 1)));
...
}

The ARRAY_RESHAPE attribute transforms the arrays into the form shown in the following
figure.

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  455Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=gle1504034361378
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=irn1582730075765.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=455


Figure 87: ARRAY_RESHAPE

0 1 2 ... N-3 N-2 N-1

N/2 ... N-2 N-1
0 1 ... (N/2-1)

1 ... N-3 N-1
0 2 ... N-2

block

cyclic

complete

X14307-110217

0 1 2 ... N-3 N-2 N-1

0 1 2 ... N-3 N-2 N-1

array1[N]

array2[N]

array3[N] N-1
N-2
...
1
0

MSB
LSB

MSB
LSB

MSB

LSB

array4[N/2]

array5[N/2]

array6[1]

Syntax

Place the attribute with the definition of the array variable.

__attribute__((xcl_array_reshape(<type>,<factor>, 
<dimension>)))

Where:

• <type>: Specifies one of the following partition types:

○ cyclic: Cyclic partitioning is the implementation of an array as a set of smaller physical
memories that can be accessed simultaneously by the logic in the compute unit. The array
is partitioned cyclically by putting one element into each memory before coming back to
the first memory to repeat the cycle until the array is fully partitioned.

○ block: Block partitioning is the physical implementation of an array as a set of smaller
memories that can be accessed simultaneously by the logic inside the compute unit. In this
case, each memory block is filled with elements from the array before moving on to the
next memory.

○ complete: Complete partitioning decomposes the array into individual elements. For a
one-dimensional array, this corresponds to resolving a memory into individual registers.
The default <type> is complete.

• <factor>: For cyclic type partitioning, the <factor> specifies how many physical memories
to partition the original array into in the kernel code. For Block type partitioning, the
<factor> specifies the number of elements from the original array to store in each physical
memory.

IMPORTANT! For complete  type partitioning, the <factor>  should not be specified.

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  456Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=456


• <dimension>: Specifies which array dimension to partition. Specified as an integer from 1 to
<N>. The Vitis core development kit supports arrays of <N> dimensions and can partition the
array on any single dimension.

Example 1

Reshapes (partition and maps) an 8-bit array with 17 elements, AB[17], into a new 32-bit array
with five elements using block mapping.

int AB[17] __attribute__((xcl_array_reshape(block,4,1)));

TIP: A <factor>  of 4 indicates that the array should be divided into four. As a result, the 17 elements
are reshaped into an array of five elements, with four times the bit-width. In this case, the last element,
AB[17], is mapped to the lower eight bits of the fifth element, and the rest of the fifth element is empty.

Example 2

Reshapes the two-dimensional array AB[6][4] into a new array of dimension [6][2], in which
dimension 2 has twice the bit-width:

int AB[6][4] __attribute__((xcl_array_reshape(block,2,2)));

Example 3

Reshapes the three-dimensional 8-bit array, AB[4][2][2] in function foo, into a new single
element array (a register), 128-bits wide (4×2×2×8):

int AB[4][2][2] __attribute__((xcl_array_reshape(complete,0)));

TIP: A <dimension> of 0 means to reshape all dimensions of the array.

See Also

• xcl_array_partition

• pragma HLS array_reshape

• Vitis HLS Flow

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  457Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=mrl1504034361747
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=irn1582730075765.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=457


xcl_dataflow
Description

Enables task-level pipelining, allowing functions and loops to overlap in their operation,
increasing the concurrency of the RTL implementation, and increasing the overall throughput of
the design.

All operations are performed sequentially in a C description. In the absence of any directives that
limit resources, such as pragma HLS allocation, the Vitis HLS tool seeks to minimize
latency and improve concurrency. However, data dependencies can limit this. For example,
functions or loops that access arrays must finish all read/write accesses to the arrays before they
complete. This prevents the next function or loop that consumes the data from starting
operation. The dataflow optimization enables the operations in a function or loop to start
operation before the previous function or loop completes all its operations.

When dataflow optimization is specified, the HLS tool analyzes the dataflow between sequential
functions or loops and creates channels (based on ping-pong RAMs or FIFOs) that allow
consumer functions or loops to start operation before the producer functions or loops have
completed. This allows functions or loops to operate in parallel, which decreases latency and
improves the throughput of the RTL.

If no initiation interval (number of cycles between the start of one function or loop and the next)
is specified, the HLS tool attempts to minimize the initiation interval and start operation as soon
as data is available.

TIP: The HLS tool provides dataflow configuration settings. The config_dataflow command specifies
the default memory channel and FIFO depth used in dataflow optimization.

For the DATAFLOW optimization to work, the data must flow through the design from one task
to the next. The following coding styles prevent the HLS tool from performing the DATAFLOW
optimization:

• Single-producer-consumer violations

• Bypassing tasks

• Feedback between tasks

• Conditional execution of tasks

• Loops with multiple exit conditions

IMPORTANT! If any of these coding styles are present, the HLS tool issues a message and does not
perform DATAFLOW optimization.

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  458Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=458


Finally, the DATAFLOW optimization has no hierarchical implementation. If a sub-function or
loop contains additional tasks that might benefit from the DATAFLOW optimization, you must
apply the optimization to the loop, the sub-function, or inline the sub-function.

Syntax

Assign the XCL_DATAFLOW attribute before the function definition or the loop definition:

__attribute__((xcl_dataflow))

Examples

Specifies dataflow optimization within function foo.

__attribute__((xcl_dataflow))
void foo ( a, b, c, d ) {
...
}

See Also

• pragma HLS dataflow

• Vitis HLS Flow

xcl_latency
Description

The XCL_LATENCY attribute specifies a minimum, or maximum latency value, or both, for the
completion of functions, loops, and regions. Latency is defined as the number of clock cycles
required to produce an output. Function or region latency is the number of clock cycles required
for the code to compute all output values, and return. Loop latency is the number of cycles to
execute all iterations of the loop. See "Performance Metrics Example" of Vitis HLS User Guide
(UG1399).

TheVitis HLS tool always tries to minimize latency in the design. When the XCL_LATENCY
attribute is specified, the tool behavior is as follows:

• When latency is greater than the minimum, or less than the maximum: The constraint is
satisfied. No further optimizations are performed.

• When latency is less than the minimum: If the HLS tool can achieve less than the minimum
specified latency, it extends the latency to the specified value, potentially increasing sharing.

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  459Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=zof1504034359187
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=irn1582730075765.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=459


• When latency is greater than the maximum: If the HLS tool cannot schedule within the
maximum limit, it increases effort to achieve the specified constraint. If it still fails to meet the
maximum latency, it issues a warning, and produces a design with the smallest achievable
latency in excess of the maximum.

TIP: You can also use the XCL_LATENCY attribute to limit the efforts of the tool to find a optimum
solution. Specifying latency constraints for scopes within the code: loops, functions, or regions, reduces the
possible solutions within that scope and improves tool runtime. For more information, refer to "Improving
Run Time and Capacity" of Vitis HLS User Guide (UG1399).

Syntax

Assign the XCL_LATENCY attribute before the body of the function, loop, or region:

__attribute__((xcl_latency(min, max)))

Where:

• <min>: Specifies the minimum latency for the function, loop, or region of code.

• <max>: Specifies the maximum latency for the function, loop, or region of code.

Example 1

The for loop in the test function is specified to have a minimum latency of 4 and a maximum
latency of 8.

__kernel void test(__global float *A, __global float *B, __global float *C, 
int id) 
{
  for (unsigned int i = 0; i < id; i++)
__attribute__((xcl_latency(4, 12))) {
   C[id] = A[id] * B[id];
 }
}

See Also

• pragma HLS latency

• Vitis HLS Flow

xcl_loop_tripcount
Description

The XCL_LOOP_TRIPCOUNT attribute can be applied to a loop to manually specify the total
number of iterations performed by the loop.

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  460Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=rym1504034365159
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=irn1582730075765.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=460


IMPORTANT! The XCL_LOOP_TRIPCOUNT attribute is for analysis only, and does not impact the results
of synthesis.

The Vivado High-Level Synthesis (HLS) reports the total latency of each loop, which is the
number of clock cycles to execute all iterations of the loop. The loop latency is therefore a
function of the number of loop iterations, or tripcount.

The tripcount can be a constant value. It can depend on the value of variables used in the loop
expression (for example, x<y), or depend on control statements used inside the loop. In some
cases, the HLS tool cannot determine the tripcount, and the latency is unknown. This includes
cases in which the variables used to determine the tripcount are:

• Input arguments, or

• Variables calculated by dynamic operation.

In cases where the loop latency is unknown or cannot be calculated, the
XCL_LOOP_TRIPCOUNT attribute lets you specify minimum, maximum, and average iterations
for a loop. This lets the tool analyze how the loop latency contributes to the total design latency
in the reports, and helps you determine appropriate optimizations for the design.

Syntax

Place the attribute in the OpenCL source before the loop declaration.

__attribute__((xcl_loop_tripcount(<min>, <max>, <average>)))

Where:

• <min>: Specifies the minimum number of loop iterations.

• <max>: Specifies the maximum number of loop iterations.

• <avg>: Specifies the average number of loop iterations.

Examples

In this example, the WHILE loop in function f is specified to have a minimum tripcount of 2, a
maximum tripcount of 64, and an average tripcount of 33.

__kernel void f(__global int *a) {
unsigned i = 0;
__attribute__((xcl_loop_tripcount(2, 64, 33)))
  while(i < 64) {
    a[i] = i;
    i++;
  }
}

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  461Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=461


See Also

• pragma HLS occurence

• Vitis HLS Flow

xcl_max_work_group_size
Description

Use this attribute instead of REQD_WORK_GROUP_SIZE when you need to specify a larger
kernel than the 4K size.

Extends the default maximum work group size supported in the Vitis core development kit by the
reqd_work_group_size attribute. Vitis core development kit supports work size larger than
4096 with the XCL_MAX_WORK_GROUP_SIZE attribute.

Note: The actual workgroup size limit is dependent on the Xilinx device selected for the platform.

Syntax

Place this attribute before the kernel definition, or before the primary function specified for the
kernel:

__attribute__((xcl_max_work_group_size(<X>, <Y>, <Z>)))

Where:

• <X>, <Y>, <Z>: Specifies the ND range of the kernel. This represents each dimension of a
three dimensional matrix specifying the size of the work-group for the kernel.

Example 1

Below is the kernel source code for an un-optimized adder. No attributes were specified for this
design, other than the work size equal to the size of the matrices (for example, 64x64). That is,
iterating over an entire workgroup will fully add the input matrices, a and b, and output the
result. All three are global integer pointers, which means each value in the matrices is four bytes,
and is stored in off-chip DDR global memory.

#define RANK 64
__kernel __attribute__ ((reqd_work_group_size(RANK, RANK, 1)))
void madd(__global int* a, __global int* b, __global int* output) {
int index = get_local_id(1)*get_local_size(0) + get_local_id(0);
output[index] = a[index] + b[index];
}

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  462Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=zah1504034366392
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=irn1582730075765.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=462


This local work size of (64, 64, 1) is the same as the global work size. This setting creates a total
work size of 4096.

Note: This is the largest work size that Vitis core development kit supports with the standard OpenCL
attribute REQD_WORK_GROUP_SIZE. Vitis core development kit supports work size larger than 4096
with the Xilinx attribute xcl_max_work_group_size.

Any matrix larger than 64x64 would need to only use one dimension to define the work size.
That is, a 128x128 matrix could be operated on by a kernel with a work size of (128, 1, 1), where
each invocation operates on an entire row or column of data.

See Also

• https://www.khronos.org/

• The OpenCL C Specification

xcl_pipeline_loop
Description

You can pipeline a loop to improve latency and maximize kernel throughput and performance.

Although unrolling loops increases concurrency, it does not address the issue of keeping all
elements in a kernel data path busy at all times. Even in an unrolled case, loop control
dependencies can lead to sequential behavior. The sequential behavior of operations results in
idle hardware and a loss of performance.

Xilinx addresses this issue by introducing a vendor extension on top of the OpenCL 2.0 API
specification for loop pipelining using the XCL_PIPELINE_LOOP attribute.

By default, the v++ compiler automatically pipelines loops with a trip count more than 64, or
unrolls loops with a trip count less than 64. This should provide good results. However, you can
choose to pipeline loops (instead of the automatic unrolling) by explicitly specifying the
NOUNROLL attribute and XCL_PIPELINE_LOOP attribute before the loop.

Syntax

Place the attribute in the OpenCL source before the loop definition:

__attribute__((xcl_pipeline_loop(<II_number>)))

Where:

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  463Send Feedback

https://www.khronos.org/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=463


• <II_number>: Specifies the desired initiation interval (II) for the pipeline. The Vitis HLS tool
tries to meet this request; however, based on data dependencies, the loop might have a larger
initiation interval. When the II is not specified, the default is 1.

Example 1

The following example specifies an II target of 3 for the for loop in the specified function:

__kernel void f(__global int *a) {
  __attribute__((xcl_pipeline_loop(3)))
  for (unsigned i = 0; i < 64; ++i)
    a[i] = i;
}

See Also

• pragma HLS pipeline

• Vitis HLS Flow

xcl_pipeline_workitems
Description

Pipeline a work item to improve latency and throughput. Work item pipelining is the extension of
loop pipelining to the kernel work group. This is necessary for maximizing kernel throughput and
performance.

Syntax

Place the attribute in the OpenCL API source before the elements to pipeline:

__attribute__((xcl_pipeline_workitems))

Example 1

To handle the reqd_work_group_size attribute in the following example, Vitis technology
automatically inserts a loop nest to handle the three-dimensional characteristics of the ND range
(3,1,1). As a result of the added loop nest, the execution profile of this kernel is like an
unpipelined loop. Adding the XCL_PIPELINE_WORKITEMS attribute adds concurrency and
improves the throughput of the code.

kernel
__attribute__ ((reqd_work_group_size(3,1,1)))
void foo(...)
{
...
__attribute__((xcl_pipeline_workitems)) {

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  464Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=fde1504034360078
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=irn1582730075765.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=464


int tid = get_global_id(0);
op_Read(tid);
op_Compute(tid);
op_Write(tid);
}
...
}

Example 2

The following example adds the work-item pipeline to the appropriate elements of the kernel:

__kernel __attribute__ ((reqd_work_group_size(8, 8, 1)))
void madd(__global int* a, __global int* b, __global int* output)
{
int rank = get_local_size(0);
__local unsigned int bufa[64];
__local unsigned int bufb[64];
__attribute__((xcl_pipeline_workitems)) {
int x = get_local_id(0);
int y = get_local_id(1);
bufa[x*rank + y] = a[x*rank + y];
bufb[x*rank + y] = b[x*rank + y];
}
barrier(CLK_LOCAL_MEM_FENCE);
__attribute__((xcl_pipeline_workitems)) {
int index = get_local_id(1)*rank + get_local_id(0);
output[index] = bufa[index] + bufb[index];
}
}

See Also

• pragma HLS pipeline

• Vitis HLS Flow

xcl_reqd_pipe_depth
Description

IMPORTANT! Pipes must be declared in lower case alphanumerics. printf()  is also not supported
with variables used in pipes.

The OpenCL framework 2.0 specification introduces a new memory object called pipe. A pipe
stores data organized as a FIFO. Pipes can be used to stream data from one kernel to another
inside the FPGA without using the external memory, which greatly improves the overall system
latency.

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  465Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=hlspragmas.html;a=fde1504034360078
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=irn1582730075765.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=465


In the Vitis core development kit, pipes must be statically defined outside of all kernel functions.
The depth of a pipe must be specified by using the XCL_REQD_PIPE_DEPTH attribute in the pipe
declaration:

pipe int p0 __attribute__((xcl_reqd_pipe_depth(512)));

Pipes can only be accessed using standard OpenCL read_pipe() and write_pipe() built-in
functions in non-blocking mode, or using Xilinx-extended read_pipe_block() and
write_pipe_block() functions in blocking mode.

IMPORTANT! Vitis HLS only supports blocking mode for reading and writing pipes. The non-block
read_pipe/write_block functions are not supported.

IMPORTANT! A given pipe can have one and only one producer and consumer in different kernels.

Pipe objects are not accessible from the host CPU. The status of pipes can be queried using
OpenCL get_pipe_num_packets() and get_pipe_max_packets() built-in functions. For
more details on these built-in functions, see The OpenCL C Specification from Khronos OpenCL
Working Group.

Syntax

This attribute must be assigned at the declaration of the pipe object:

pipe int <id> __attribute__((xcl_reqd_pipe_depth(<n>)));

Where:

• <id>: Specifies an identifier for the pipe, which must consist of lower-case alphanumerics. For
example, <infifo1> not <inFifo1>.

• <n>: Specifies the depth of the pipe. Valid depth values are 16, 32, 64, 128, 256, 512, 1024,
2048, 4096, 8192, 16384, 32768.

Examples

The following is the dataflow_pipes_ocl example from Xilinx GitHub that use pipes to pass
data from one processing stage to the next using blocking read_pipe_block() and
write_pipe_block() functions:

pipe int p0 __attribute__((xcl_reqd_pipe_depth(32)));
pipe int p1 __attribute__((xcl_reqd_pipe_depth(32)));
// Input Stage Kernel : Read Data from Global Memory and write into Pipe P0
kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void input_stage(__global int *input, int size)
{
__attribute__((xcl_pipeline_loop))
mem_rd: for (int i = 0 ; i < size ; i++)
{
//blocking Write command to pipe P0

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  466Send Feedback

https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/dataflow
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=466


write_pipe_block(p0, &input[i]);
}
}
// Adder Stage Kernel: Read Input data from Pipe P0 and write the result
// into Pipe P1
kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void adder_stage(int inc, int size)
{
__attribute__((xcl_pipeline_loop))
execute: for(int i = 0 ; i < size ; i++)
{
int input_data, output_data;
//blocking read command to Pipe P0
read_pipe_block(p0, &input_data);
output_data = input_data + inc;
//blocking write command to Pipe P1
write_pipe_block(p1, &output_data);
}
}
// Output Stage Kernel: Read result from Pipe P1 and write the result to 
// Global Memory
kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void output_stage(__global int *output, int size)
{
__attribute__((xcl_pipeline_loop))
mem_wr: for (int i = 0 ; i < size ; i++)
{
//blocking read command to Pipe P1
read_pipe_block(p1, &output[i]);
}
}

See Also

• https://www.khronos.org/

• The OpenCL C Specification

xcl_zero_global_work_offset
Description

If you use clEnqueueNDRangeKernel with the global_work_offset set to NULL or all
zeros, use this attribute to tell the compiler that the global_work_offset is always zero.

This attribute can improve memory performance when you have memory accesses like:

A[get_global_id(x)] = ...;

Note: You can specify REQD_WORK_GROUP_SIZE, VEC_TYPE_HINT, and
XCL_ZERO_GLOBAL_WORK_OFFSET together to maximize performance.

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  467Send Feedback

https://www.khronos.org/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=467


Syntax

Place this attribute before the kernel definition or the primary function specified for the kernel.

__kernel __attribute__((xcl_zero_global_work_offset))
void test (__global short *input, __global short *output, __constant short 
*constants) { }

See Also

• reqd_work_group_size

• vec_type_hint

• clEnqueueNDRangeKernel

Section V: Vitis Environment Reference Materials
Chapter 34: OpenCL Attributes

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  468Send Feedback

https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clEnqueueNDRangeKernel.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=468


Section VI

Using the Vitis Analyzer
Revision History

The following table shows the revision history for this section.

Section Revision Summary
08/20/2020 Version 2020.1

Entire section No updates to this section.

06/24/2020 Version 2020.1

Entire section Editorial updates only. No technical content updates.

06/03/2020 Version 2020.1

Vitis Analyzer GUI and Window Manager Updated information about the Vitis Analyzer Workspace.
Added new sections:

• Diff Two Text Files

• Cross-Probing Between Reports

Platform and System Diagrams Added new chapter.

Creating an Archive File Added new chapter.

General updates Updated figures and tool commands.

Introduction

This section contains the following chapters:

• Working with Reports

• Vitis Analyzer GUI and Window Manager

• Platform and System Diagrams

• Creating an Archive File

• Configuring the Vitis Analyzer

The Vitis™ analyzer is a utility that allows you to view and analyze the reports generated while
building and running the application. It is intended to let you review reports generated by both
the Vitis compiler when the application is built, and the Xilinx® Runtime (XRT) library when the
application is run. The Vitis analyzer can be used to view reports from both the v++ command
line flow, and the Vitis integrated design environment (IDE). You will launch the tool using the
vitis_analyzer command (see Setting up the Vitis Environment).

Section VI: Using the Vitis Analyzer

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  469Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=469


When first launched, the Vitis analyzer opens with a home screen that lets you open summary
files, binary containers, or directories. Clicking any of these links opens a file browser that allows
you to select a specific file of the type described.

Figure 88: Vitis Analyzer – Home Screen

For the Build section:

• Open Summary: Report Summaries are collections of reports related to specific stages of
application development in the Vitis tool. There are summaries created for the two steps of
the build process, compile and link, and from the run process when the application is
executed. Selecting Open Summary lets you open one of the following:

• Compile Summary: The Compile Summary report is generated by the v++ command during
compilation, provides the status of the kernel compilation process. When viewing the
Compile Summary report the tool also references the following reports generated during
compilation: Kernel Estimate, Kernel Guidance, HLS Synthesis, and compilation log.

• Link Summary: The Link Summary report is created by the v++ command during linking
and creation of the .xclbin file. When viewing the Link Summary report the tool also
references the following reports generated during linking: System Estimate, System
Guidance, Timing Summary, Utilization, Operation Trace, Platform and System Diagrams,
and linking logs. When you open a Link Summary, the Vitis analyzer will automatically open
the associated Compile Summaries of kernels that were linked into the .xclbin file.

Section VI: Using the Vitis Analyzer

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  470Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=470


Note: Timing Summary and Utilization are only generated when the build targets Hardware (as
opposed to emulation).

• Run Summary: The Run Summary report is created by the XRT library during the
application execution, and provides a summary of the run process. When viewing the Run
Summary report the tool also references the following reports generated during the
application run: Guidance, Profile Summary, Application Timeline, Platform and System
Diagrams.

When you run the application after the v++ build process, the ID from the Link Summary is
assigned to the Run Summary. When you open Run Summary and Link Summary, Vitis
Analyzer links them based on the shared ID.

TIP: Multiple Run Summaries can use the same ID, linking them to the same Link Summary file.

• Open Binary Container: Opens the selected .xclbin file to display the Platform Diagram
and the System Diagram for the build.

• Open Directory: Specifies a directory to open. The tool recursively examines the contents of
the directory and displays a dialog box allowing you to select which type of files to open and
which individual files to open.

TIP: The Open Recent section of the home screen provides a list of recently opened summaries and reports
to let you quickly reopen them.

The vitis_analyzer command allows you to open the tool to the home screen, as discussed
above, or specify a file to load when opening the tool. You can open a file by specifying the name
of the file to open. You can open the Vitis analyzer with any of the files supported by the tool, as
described in Working with Reports. For example:

vitis_analyzer project1.run_summary

You can access the command help for vitis_analyzer command by typing the following:

vitis_analyzer -help

Section VI: Using the Vitis Analyzer

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  471Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=471


Chapter 35

Working with Reports
Generally, the Compile Summary, Link Summary, and Run Summary reports provide you a great
overview of the specific steps in building and profiling the application to get a good view of
where the application is with regard to performance and optimization. For individual kernels,
start with the Compile Summary. For the FPGA binary (xclbin), start with the Link Summary,
which also loads the Compile Summaries for included kernels. For profiling data related to the
application execution start with the Run Summary.

In addition, the File menu offers commands to let you open individual reports, and directories of
reports.

Figure 89: Open Directory

• Open Directory: Specifies a directory to open. The tool recursively examines the contents of
the directory and displays a dialog box allowing you to select which type of files to open and
which individual files to open.

Section VI: Using the Vitis Analyzer
Chapter 35: Working with Reports

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  472Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=472


• Open Binary Container: FPGA binary, <name>.xclbin, created by the compilation and
linking process as described in Section III: Building and Running the Application.

• Open Report: Opens one of the report files generated by the Vitis core development kit
during compilation, linking, or running the application. The reports you can open include:

• Application Timeline: Refer to Application Timeline.

• Profile Summary: Refer to Profile Summary Report.

• Waveform: Waveform database and waveform config file as described in Waveform View
and Live Waveform Viewer.

• Utilization: A resource utilization report generated by the Vivado® tool when you build the
system hardware (HW) target.

The Vitis analyzer can also open Kernel Estimate, Operation Trace, Low Overhead Profile Trace,
System Estimate, Log, and Timing Summary reports. Refer to Profiling the Application for more
information on the individual reports generated by the build and run processes.

The Vitis analyzer displays log files rendered for improved readability. Some key additions the
tool provides when viewing log files include line wrapping, message severity tagging (Error,
Warning, Info), added hyperlinks to referenced files, search capability, and live log monitoring.
This last feature lets you open a log file in-process and see it rendered in real time.

Viewing Report Contents

The features of the Vitis analyzer depend on the specific report you are viewing. When the
report is structured like a spreadsheet you interact with the report like a spreadsheet, selecting
rows or cells of data, and sorting columns by clicking on the column header. When the report is
graphical in nature, you can interact with the report by zooming into the report to view details,
and zooming out to view more information. The Vitis analyzer supports the following mouse
strokes to let you quickly zoom into and out of a graphical report:

• Zoom In: Press and hold the left mouse button while dragging the mouse from top left to
bottom right to define an area to zoom into.

• Zoom Out: Press and hold the left mouse button while drawing a diagonal line from lower left
to upper right. This zooms out the window by a variable amount. The length of the line drawn
determines the zoom factor applied. Alternatively, press Ctrl and scroll the wheel mouse
button down to zoom out.

• Zoom Fit: Press and hold the left mouse button while drawing a diagonal line from lower right
to upper left. The window zooms out to display the entire device.

• Horizontal scrolling: In a report such as the Application Timeline, you can hold the shift button
down while scrolling the middle mouse roller to scroll across the timeline.

• Panning: Press and hold the wheel mouse button while dragging to pan.

Section VI: Using the Vitis Analyzer
Chapter 35: Working with Reports

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  473Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=473


Chapter 36

Vitis Analyzer GUI and Window
Manager

The following figure shows an example of the Link Summary and System Guidance reports
opened in the Vitis analyzer. By default the workspace is arranged into three views, including the
Report Navigator, Reports, and the Source Code view.

Figure 90: Vitis Analyzer Workspace

• Report Navigator: 

On the left side, this view lists all open summary files and associated reports. You can use this
view to quickly find and open a report. In the figure above you can see that the Link Summary
and the Compile Summary files, and all their related reports, are listed in the Report Navigator.

Section VI: Using the Vitis Analyzer
Chapter 36: Vitis Analyzer GUI and Window Manager

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  474Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=474


When you click any file in Report Navigator, it opens as a new tab in the Report view. Opening
a file adds an asterisk next to the report name in Report Navigator to let you quickly
determine if a report is already open in the tool.

TIP: You can right-click the Compile Summary file to Open HLS Project, or right-click the Link Summary
or Run Summary to Open Vivado Project if needed. The Vivado project cannot be opened for the
Software Emulation build.

• Reports: The center area displays the contents of the summary files and open reports. You can
have multiple reports open in the Reports view, and quickly change from one report to
another by selecting the window tab at the top of the view.

All the reports related to the Compile Summary, Link Summary, or Run Summary are grouped
together within a single container. You can arrange the reports for a container in different
ways, using the New Horizontal Group, New Vertical Group, or Float commands for the
reports in a container. Multiple Summary reports can be opened and, and the contents
managed as collections.

• Source Code: The optional Source Code view is opened on the right side of the workspace.
This lets you view and edit kernel source code, based on feedback from the System Guidance
report for instance. You can open the source code window by selecting a link in the Guidance
report, or by right-clicking the Compile Summary in the Report Navigator and clicking Open
Source.

The Report Navigator and Source Code views can be collapsed by clicking the Minimize button in
the toolbar, and restored by clicking the tab for the collapsed view.

To close all the open source code views, select the File → Close All Sources command.

To close all the open reports associated with a Summary report, such as the Link Summary, right-
click the Summary in the Report Navigator view and select Close Tabs. This closes all open
reports associated with the summary in the Report view.

To close a Summary file, such as the Link Summary, right-click the file in the Report Navigator
area and select Close File. Closing the Summary file closes all associated reports and files.
Therefore, closing the Link Summary also ends the Compile Summary for the build.

To close all files displayed in the Report Navigator select the File → Close All Files command. This
returns Vitis analyzer to the home screen.

Diff Two Text Files
The Vitis analyzer lets you compare two reports of the same type. This opens a report window
similar to the one shown below.

Section VI: Using the Vitis Analyzer
Chapter 36: Vitis Analyzer GUI and Window Manager

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  475Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=475


Figure 91: Compare Text Files

The text-based comparison reports include:

• Kernel estimate

• System estimate

• Timing summary

• Log files

To compare reports, you must have two of the same type of reports listed in the Report
Navigator window, or opened in the Reports view. Right-click a supported report in the Report
Navigator, or in the Report view, and select the Diff with > command. This command lets you
specify another report of the same type to compare with the currently selected report.

Cross-Probing Between Reports
The Vitis analyzer supports a variety of selectable objects within different reports and views:

Section VI: Using the Vitis Analyzer
Chapter 36: Vitis Analyzer GUI and Window Manager

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  476Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=476


• Compute Units (CU): Selectable in the System Diagram and associated Compute Units table.
Selecting the kernel selects associated compute units and vice versa. The CU is found in the
Utilization report, the Profile Summary, the Application Timeline, and the Waveform view.

• CU ports: Selectable in the System Diagram.

• Kernels: Selectable in the System Diagram and associated Kernels table. Note that selecting
the kernel also selects the CUs and vice versa. Kernels are found in the Link Summary,
Utilization report, System Guidance (under Accelerators), Profile Summary, and the Waveform
view.

• Kernel ports: Selectable in the System Diagram.

• Function arguments: Selectable the System Diagram and Kernels table.

• AXI interconnects: Selectable in the System Diagram. This selects all connections to a memory
bank.

• AXI ports: Selectable in the System Diagram. These are "flattened", for example, they are the
same for all kernels. Shown in the Profile Summary, and the Waveform view (data transfers).

• Memory resources: Selectable in the Platform and System Diagrams, and associated
Memories table. Shown in the Profile Summary (data transfers: kernels to global memory).

• Host CPU: Selectable in the Platform and System Diagrams.

Figure 92: Cross-Probing Reports

Section VI: Using the Vitis Analyzer
Chapter 36: Vitis Analyzer GUI and Window Manager

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  477Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=477


The Vitis analyzer supports cross-probing between reports, such as within the System Diagram
and from the Guidance View to other views. The Guidance view will provide an actionable
resolution for a violation reported, and you can use cross-probing from the violation to quickly
navigate to other reports and views.

Cross-probing can be bidirectional or unidirectional, depending on the report. The Guidance
report lets you select objects in other reports, but does not support cross-probing from other
reports or views.

• Bidirectional cross-probing between the System Diagram and Profile Summary report.
Selecting a kernel, compute unit or compute unit port in one selects it in the other. Selecting a
kernel also selects associated CUs in the reports.

• Unidirectional cross-probing from the Guidance to the System Diagram and Profile Summary
report. The Details column of the guidance report displays hyperlinks that correspond to
design objects such as kernels, CUs, etc.

○ Clicking a kernel, compute unit, or compute unit port hyperlink in Guidance selects it in the
System Diagram and Profile Summary.

○ Clicking a memory or kernel argument hyperlink selects it in the System Diagram, but not
the Profile Summary.

○ Clicking a kernel port hyperlink in Guidance selects a CU port in the System Diagram.

○ In some cases, the Details column displays a hyperlink for a value, for example, 82.601%.

- Clicking a value hyperlink selects the corresponding design object and navigates to the
associated section in the Profile Summary report.

- If the report is already open but is hidden behind another tab, it will be brought to the
front.

- If the report is not open, clicking a value hyperlink will open the report.

○ Guidance hyperlinks also have tooltips explaining what the click action does.

○ Additionally, selecting other objects such as the host, memories, AXI interconnects, and
kernel arguments in the System Diagram does not cross-probe to the Profile Summary
because the report does not represent these as selectable objects.

Section VI: Using the Vitis Analyzer
Chapter 36: Vitis Analyzer GUI and Window Manager

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  478Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=478


Chapter 37

Platform and System Diagrams
The Platform and System Diagrams display a representation of the platform resources, and the
kernel code integrated onto the platform. They can be viewed in the Vitis analyzer from the Link
Summary, the Run Summary, or the .xclbin for a project.

The Platform Diagram is a block diagram of the target platform, before the .xclbin is loaded.
This diagram shows all DDR banks and PLRAM available, and their available connections. A table
at the bottom displays details of bank names with types of memories, their sizes and which SLR
region these are available.

The System Diagram shows memory banks or PLRAMs used by the .xclbin. You can also see
how the function arguments of Compute Units are connected to AXI4 interfaces. A table at the
bottom of the System Diagram displays information for each Compute Unit, Kernels, and
Memories. Features of the System Diagram include the following:

• Name of the kernel with an indication which SLR this is available.

• LUT%

• Register %

• BRAM % used

• DSP % used

Section VI: Using the Vitis Analyzer
Chapter 37: Platform and System Diagrams

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  479Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=479


Figure 93: System Diagram with Profile Data

When Run Summary is loaded, the System Diagram includes profile data from the run. The Vitis
analyzer automatically runs perf_analyze when opening a run summary that contains a
profile_summary.csv as well as optionally profile_kernels.csv for Hardware
Emulation. The profile data is added to the table at the bottom of the System Diagram and can
also be displayed in the diagram, as shown in the figure above.

The resource information from the table can also be displayed in a box next to each kernel or CU
in the System Diagram. The Settings command ( ) lets you display or hide Unused Memory,
Interface Ports, Profile Info, and Resource info.

Figure 94: Show Port Info

Section VI: Using the Vitis Analyzer
Chapter 37: Platform and System Diagrams

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  480Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=480


The ports on a Compute Unit can display the transfer rates on the system diagram, as well as CU
Utilization percentage. CU port transfer rates are taken from the Kernel Transfer section of the
Profile Summary report. CU utilization statistics are taken from the Compute Unit Utilization
section of Profile Summary. The performance data is available as long as Profiling was enabled for
Hardware and Hardware Emulation run, using the Vitis compiler --profile_kernel option.
Port information can be displayed or hidden from the Settings command.

Section VI: Using the Vitis Analyzer
Chapter 37: Platform and System Diagrams

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  481Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=481


Chapter 38

Creating an Archive File
At times while developing your project, you might introduce changes in your host or kernel code
that will completely alter the contents or quality of the various build and run summaries
produced by the tool. Your existing reports and analysis data will be overwritten unless you
manually save the relevant files. The Archive Summary command lets you save all relevant files
with an open Link Summary or Run Summary.

TIP: This feature lets you quickly share design reports with other team members by sharing the archive
summary.

Select File → Archive Summary menu command, or right-click a summary in the Report Navigator
and select Archive Summary. This opens the Archive Summary dialog box as shown below.

Figure 95: Archive Summary Dialog Box

Archive file names must have the extension of link_summary.archive, or
run_summary.archive to be recognized by the Vitis analyzer. The contents of the archive
depend on the summary report being archived.

The contents of the Link Summary include:

• Binary container(s): .xclbin

• Kernel(s): .xo

Section VI: Using the Vitis Analyzer
Chapter 38: Creating an Archive File

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  482Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=482


• System/platform diagram: .json

• System estimate: .xtxt

• Guidance: .html, .pb

• Timing summary: .rpt

• Utilization(s): .xutil

• HLS synthesis report: Report

The contents of the Run Summary include:

• Run summary: .run_summary

• System diagram: .run_summary

• Platform diagram: .run_summary

• Guidance: Not required, generated using via perf_analyze and the profile_summary.csv

• Profile summary: profile_summary.csv

• Application timeline: timeline_trace.csv

• Waveform report: .wdb

You can also choose to save the .xclbin file, any compiled kernel object files (.o and .xo), and
the original source files (.cpp, .c, and .cl) used to generate the summary reports.

TIP: Guidance is not saved because this is dynamically generated by Vitis analyzer from
profile_summary.csv, and optionally profile_kernels.csv.

To open an existing archive file, use the File → Open Summary command and browse for the
archive file. You can also open an archive file when launching Vitis analyzer:

vitis_analyzer design.archive

There is also a command line form of Archive Summary that you learn more about with:

archive_summary -help

Section VI: Using the Vitis Analyzer
Chapter 38: Creating an Archive File

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  483Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=483


Chapter 39

Configuring the Vitis Analyzer
The Tools → Settings command opens the Vitis Analyzer Settings dialog box as shown below.

Figure 96: Settings Dialog Box

In the General settings, the following can be configured:

• Default Directory: Specifies the default directory used by the Vitis analyzer when it is opened.

• Recent: Configures the tool to restore the workspace when reopening the Vitis analyzer, and
specify the number of entries to display for File → Open Recent commands.

• Report Tabs: Defines the number of reports and views that can be opened in the main Reports
window.

In the Display settings you can configure the following features of the display:

• Scaling: Sets the font scaling to make the display easier to read on high resolution monitors.
Use OS font scaling uses the value set by the OS for your primary monitor. User-defined
scaling allows you to specify a value specific to the Vitis analyzer.

Section VI: Using the Vitis Analyzer
Chapter 39: Configuring the Vitis Analyzer

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  484Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=484


• Spacing: Sets the amount of space used by the Vitis (IDE. Comfortable is the default setting.
Compact reduces the amount of space between elements to fit more elements into a smaller
space.

The Reports section configures the Vitis analyzer to also open specified reports when opening
the Compile Summary, Link Summary, Run Summary, or Binary Container reports:

• Compile Summary: Select which reports are listed in the Report Navigator view, and opened
with the Compile Summary.

• Link Summary: Select which reports are listed and opened with the Link Summary.

• Run Summary: Select which reports are listed and opened with the Run Summary.

• Binary Container: Select which reports are listed and opened with the Binary Container.

For Window Behavior settings, the following can be configured:

• Warnings: Shows warning when exiting or just exits the Vitis analyzer.

• Alerts: Issues an alert when you are running the tool on an unsupported operating system.

After configuring the tool, click OK, Apply, or Cancel. You can also use the Restore command to
restore the defaults settings of the tool.

Section VI: Using the Vitis Analyzer
Chapter 39: Configuring the Vitis Analyzer

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  485Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=485


Section VII

Using the Vitis IDE
Revision History

The following table shows the revision history for this section.

Section Revision Summary
08/20/2020 Version 2020.1

Entire section No updates to this section.

06/24/2020 Version 2020.1

Entire section Editorial updates only. No technical content updates.

06/03/2020 Version 2020.1

Getting Started with Examples Added information working with and using Vitis libraries.

Vitis Command Options Added the -debug command.

Create an Application Project Updated with new information for IDE changes and steps in
flow.

Vitis IDE Debug Flow Added new sections:
• Using the Standalone Debug Flow
• vitis -debug Command Line

General updates Updated figures and tool commands.

Introduction

In the Vitis integrated design environment (IDE), you can create a new application project, or
platform development project.

This section contains the following chapters:

• Vitis Command Options

• Creating a Vitis IDE Project

• Building the System

• Vitis IDE Debug Flow

• Configuring the Vitis IDE

• Project Export and Import

• Getting Started with Examples

Section VII: Using the Vitis IDE

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  486Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=486


Chapter 40

Vitis Command Options
The vitis command launches the Vitis IDE with your defined options. It provides options for
specifying the workspace and options of the project. The following sections describe the vitis
command options.

Display Options

The following options display the specified information intended for review.

• -help: Displays help information for the Vitis core development kit command options.

• -debug: Launches the Vitis IDE to run debug on a command-line project.

TIP: To view the help for the vitis -debug  command, use -debug -help.

• -version: Displays the Vitis core development kit release version.

Command Options

The following command options specify how the vitis command is configured for the current
workspace and project.

• -workspace <workspace location>: Specify the workspace directory for Vitis IDE
projects.

• {-lp <repository_path>}: Add <repository_path> to the list of Driver/OS/Library
search directories.

• -eclipseargs <eclipse arguments>: Eclipse-specific arguments are passed to Eclipse.

• -vmargs <java vm arguments>: Additional arguments to be passed to Java VM.

Section VII: Using the Vitis IDE
Chapter 40: Vitis Command Options

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  487Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=487


Chapter 41

Creating a Vitis IDE Project
In the Vitis IDE, you can create a new application project, or platform development project. The
following section shows you how to set up a workspace, create a new Vitis IDE project, and use
key features of the IDE.

Launch a Vitis IDE Workspace
1. Launch the Vitis IDE directly from the following command line.

$vitis

IMPORTANT! When opening a new target platform, to enter a Vitis core development kit command,
ensure that you set it up as described in Setting up the Vitis Environment.

The Vitis IDE opens.

2. Select a workspace as shown in the following figure.

Section VII: Using the Vitis IDE
Chapter 41: Creating a Vitis IDE Project

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  488Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=488


The workspace is the folder that stores your projects, source files, and results while working
in the IDE. You can define separate workspaces for each project, or have a single workspace
with multiple projects and types. The following instructions show you how to define a
workspace for a Vitis IDE project.

3. Click Browse to navigate to and specify the workspace, or type the appropriate path in the
Workspace field.

4. Optionally enable Use this as the default and do not ask again to set the specified workspace
as your default choice and eliminate this dialog box in subsequent uses of the IDE.

Note: To restore the dialog box, navigate to Window → Preference → Additional → General → Startup
and Shutdown → Workspaces, and select Prompt for workspace on startup

5. Click Launch.

TIP: To change the current workspace from within the Vitis IDE, select File → Switch Workspace.

You have now created a workspace and can populate it with projects.

Create an Application Project
TIP: Example designs are provided with the Vitis core development kit installation and also on the Xilinx 
Vitis Examples GitHub repository. For more information, see Getting Started with Examples.

After launching the Vitis IDE, you can create a new Application Project.

1. Select File → New → Vitis Application Project, or if this is the first time the Vitis IDE has been
launched, you can select Create Application Project on the Welcome screen.

Section VII: Using the Vitis IDE
Chapter 41: Creating a Vitis IDE Project

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  489Send Feedback

https://github.com/Xilinx/Vitis_Accel_Examples
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=489


The New Application Project wizard opens displaying a Welcome page that explains the
process for new users. You can disable this from being shown again by enabling Skip
welcome page next time.

2. Click Next to open the Platform page of the New Application Project wizard to specify a
target platform.

A target platform is composed of a base hardware design and the meta-data used in attaching
accelerators to declared interfaces. Use the Select a platform from repository tab to choose a
platform for your project. You can enter a value in the Find field to limit the choices displayed
to make it easier to locate the required platform. The bottom portion displays information
related to the currently selected platform, as shown in the following figure.

Section VII: Using the Vitis IDE
Chapter 41: Creating a Vitis IDE Project

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  490Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=490


Note: For platforms supported by a specific release refer to the Release Notes in the Section I:
Introduction to the Vitis Unified Software Platform.

You can also add custom defined or third-party platforms into a repository. For more
information, see Managing Platforms and Repositories.

3. In the Application Project Details page, specify the name in the Application project name
field, as shown in the following figure.

Section VII: Using the Vitis IDE
Chapter 41: Creating a Vitis IDE Project

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  491Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=491


By default, the tool creates a new system project for your application project. However, you
can also add your application project to an existing system project, if one exists. The system
project is a top-level manager for different projects that combine to create the system view.

4. Click Next to proceed.

5. If you select an Embedded Acceleration target platform on the Platform page, as displayed in
the Flow column, the Domain page opens next as shown in the following figure.

Section VII: Using the Vitis IDE
Chapter 41: Creating a Vitis IDE Project

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  492Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=492


Select a Domain from the list of existing domains on the platform, and Domain details are
populated from your selection. The Domain defines the processor and operating used for
running the host program on the target platform. You must also set the following Application
Settings for the project to build correctly on the embedded platform:

• Sysroot path: The sysroot is part of the platform where the basic system root file
structure is defined. The Sysroot path lets you define a new sysroot for your application.

• Root FS: Specify the location of the root file system.

• Kernel Image: Specify the location of the operating system kernel.

These option can be changed after the project is created in C/C++ Build Settings → Build
Variables.

6. Click Next to open the Templates page letting you select an application template for your
new project.

Section VII: Using the Vitis IDE
Chapter 41: Creating a Vitis IDE Project

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  493Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=493


You can select an Empty Application to create a blank project that you can import files and
build from scratch. Also, you can use one of the provided template projects as a foundation
for your new application project to help start your project, or help you learn the tool.

TIP: Click the Vitis IDE Examples button, or the Vitis IDE Libraries button to install additional
examples as discussed in Getting Started with Examples.

7. Click Finish to close the New Application Project wizard, and open the project.

Managing Platforms and Repositories
You can manage the platforms that are available for use in Vitis IDE projects, from Xilinx → Add
Custom Platform in the main menu of an open project, or from the Platform dialog box. This lets
you add a new platform, or a new platform repository.

From the Platform dialog box, manage the available platforms and platform repositories using one
of the following options:

• Add Custom Platform ( ): Add your own platform to the list of available platforms. To add a
new platform, navigate to the top-level directory of the custom platform, select it, and click
OK. The custom platform is immediately available for selection from the list of available
platforms.

• Manage Platform Repositories ( ): Add or remove standard and custom platforms. If a
custom platform is added, the path to the new platform is automatically added to the
repositories. When a platform is removed from the list of repositories, it no longer displays in
the list of available platforms.

Section VII: Using the Vitis IDE
Chapter 41: Creating a Vitis IDE Project

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  494Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=494


• Add Devices/Platforms ( ): Manage the Xilinx devices and platforms installed as part of the
standard software installation. If a device or platform was not selected during the installation
process, you can add it later using this option. This launches the Vitis Installer so you can
select extra content to install. To directly add custom platforms to the tool, select Help → Add
Devices/Platforms.

Understanding the Vitis IDE
When you open a project in the Vitis IDE, the workspace is arranged in a series of different views
and editors, also known as a perspective in the Eclipse-based IDE. The tool opens with the default
perspective shown in the following figure.

Figure 97: Vitis IDE – Default Perspective

Some key views and editors in the default perspective include:

• Explorer view: Displays a file-oriented tree view of the project folders and their associated
source files, plus the build files, and reports generated by the tool. You can use this to explore
your project file hierarchy.

Section VII: Using the Vitis IDE
Chapter 41: Creating a Vitis IDE Project

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  495Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=495


• Assistant view: Provides a central location to view and manage the projects of the workspace,
and the build and run configurations of the project. You can interact with the various project
settings and reports of the different configurations. From this view, you can build and run your
Vitis IDE application projects, and launch the Vitis analyzer to view reports and performance
data as explained in Section VI: Using the Vitis Analyzer.

• Project Editor view: Displays the current project, the target platform, the active build
configuration, and specified hardware functions; allows you to directly edit project settings.

• Console view: Presents multiple views including the command console, design guidance,
project properties, logs, and terminal views.

The Vitis IDE includes several predefined perspectives, such as the Vitis IDE perspective, the
Debug perspective, and the Performance Analysis perspective. To quickly switch between
perspectives, click the perspective name in the upper right of the Vitis IDE.

You can arrange views to suit your needs by dragging and dropping them into new locations in
the IDE, and the arrangement of views is saved in the current perspective. You can close
windows by selecting the Close (X) button on the View tab. You can open new windows by using
the Window → Show View command and selecting a specific view.

To restore a perspective to the default arrangement of views, make the perspective active and
select Window → Reset Perspective.

To open different perspectives, select Window → Open Perspective.

Adding Sources
The project consists of many different source files, including C/C++ files and headers, OpenCL
files and headers, compiled Xilinx object files (.xo) containing RTL kernels as discussed in RTL
Kernels, or HLS kernels as described in Compiling Kernels with Vitis HLS.

Add Source Files
1. With the project open in the Vitis IDE, to add source files, right-click the src folder in the

Project Explorer, and click Import Sources.

This displays the Import Sources dialog box shown in the following figure.

Section VII: Using the Vitis IDE
Chapter 41: Creating a Vitis IDE Project

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  496Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=496


2. In the dialog box, for the From directory field, click the Browse button to select the directory
from which you will import sources.

3. In the Into folder field, make sure the folder specified is the src folder of your application
project.

4. Select the desired source files by enabling the check box next to the file name, and click
Finish.

IMPORTANT! When you import source files into a workspace, it copies the file into the workspace.
Any changes to the files are lost if you delete the workspace.

After adding source files to your project, you are ready to begin configuring, building, and running
the application. To open a source file in the built-in text editor, expand the src folder in the
Project Explorer and double-click on a specific file.

Create and Edit New Source Files
You can also create and edit new source files directly in the Vitis IDE.

Section VII: Using the Vitis IDE
Chapter 41: Creating a Vitis IDE Project

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  497Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=497


1. From the open project, right-click the src folder and select New → File.

The New File dialog box is displayed as shown in the following figure.

2. Select the folder in which to create the new file and enter a file name.

3. Click Finish to add the file to the project.

After adding source files to your project, you are ready to begin configuring, building, and running
the application. To open a source file in the built-in text editor, expand the src folder in the
Project Explorer and double-click on a specific file.

Section VII: Using the Vitis IDE
Chapter 41: Creating a Vitis IDE Project

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  498Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=498


Working in the Project Editor View
Building the system requires compiling and linking both the host program and the FPGA binary
(xclbin). Your defined application project includes both the host and kernel code in the src
folder, as imported or created in the project. The Project Editor view, shown in the following
figure, gives a top-level view of the project, and its various build configurations. It provides:

• General information about the project name

• Target platform

• Active build configuration

• Several configuration options related to that build configuration

These include debug options to enable debug features of the host program or kernel code,
and a menu to select the report level for the build as discussed in Controlling Report
Generation.

Figure 98: Project Editor View

The bottom portion of the Editor view displays the Hardware Functions window, which shows
the kernels that are assigned to the binary container to be built into the xclbin. To add a kernel

to the binary container, click the Add Hardware Function ( ) button in the upper right of the
window. It displays a list of kernels defined in the project. Select the kernel from the Add
Hardware Functions dialog box as shown in the following figure.

Section VII: Using the Vitis IDE
Chapter 41: Creating a Vitis IDE Project

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  499Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=499


Figure 99: Adding Hardware Functions to a Binary Container

After adding the kernel, in the Hardware Functions window, enter a value under Compute Units
to instantiate multiple instances of the kernel as described in Creating Multiple Instances of a
Kernel.

Working in the Assistant View
The Assistant view provides a project tree to manage build configurations, run configurations,
and set the attributes of these configurations. It is a companion view to the Explorer view and
displays directly below the view in the default Vitis IDE perspective. The following figure shows
an example Assistant view and its tree structure.

Section VII: Using the Vitis IDE
Chapter 41: Creating a Vitis IDE Project

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  500Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=500


Figure 100: Assistant View Tree Structure Example

The objects displayed in the Assistant view hierarchy include the top-level system project, the
application project, the software and hardware emulation build configurations, and the system
hardware build configuration.

The build configurations define the build target as described in Build Targets, and specify options
for the build process. When you select a build configuration, such as Emulation-HW build and
click the Settings icon ( ), the Vitis Build Configuration Settings dialog box opens. You will use
this Settings dialog box to configure the build process for the specific emulation or hardware
target.

TIP: You can also open the Settings dialog box by double-clicking the configuration object.

Within the hierarchy of each build configuration is the binary container (or .xclbin), the
hardware function or functions in the binary container, the run configuration, and any reports or
summaries generated by the build or run process. When you select the hardware function for a
specific build configuration and click the Settings icon, the Vitis Hardware Function Settings
dialog box is displayed. You will use theHardware Function Settings dialog box to specify the
number of compute units for each kernel, assign compute units to SLRs, and assign kernel ports
to global memory.

The run configuration is the profile used for running the compiled and linked application; it
defines the environment and options for running the application. Selecting a build configuration
and using the right-click menu to navigate to Run → Run Configurations, opens the Vitis Run
Configuration Settings dialog box, where you can configure the run.

Section VII: Using the Vitis IDE
Chapter 41: Creating a Vitis IDE Project

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  501Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=501


Figure 101: Assistant View Menu

Within the Assistant view, the View menu includes options that affect what the Assistant view
displays, which does not affect project data. Open the View menu by left-clicking the downward
pointing arrow to display the following options:

• Show Active Build Configurations Only: When enabled, the Assistant view will only show the
active build configuration for each project. This option can be useful to reduce the clutter in
the Assistant view. Select Active build configuration in the Application Project Settings tab of
the Project Editor view.

• Link with Console: When enabled, the build console in the Console view switches
automatically to match the currently selected build configuration in the Assistant view. If not
enabled, the build console does not automatically change to match the Assistant view.

• Link with Guidance: When enabled, the Guidance tab of the Console view automatically
switches to match the current selection in the Assistant view.

For each of the build configurations, reports are generated during the build and run process, and
are displayed in the Assistant view, as shown below. You can right-click a report, and select Open
in Vitis Analyzer to review the results as explained in Section VI: Using the Vitis Analyzer.

Figure 102: Open in Vitis Analyzer

Section VII: Using the Vitis IDE
Chapter 41: Creating a Vitis IDE Project

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  502Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=502


Chapter 42

Building the System
When building the system, it best practice to use the three available build targets described in 
Build Targets. Each build target is represented in a separate build configuration in the Assistant
view. Work through these build configurations in the following order:

• Emulation-SW: Build for software emulation (sw_emu) to confirm the algorithm functionality
of both the host program and kernel code working together.

• Emulation-HW: Build for hardware emulation (hw_emu) to compile the kernel into a hardware
description language (HDL), confirm the correctness of the generated logic, and evaluate its
simulated performance.

• Hardware: Perform a system hardware build (hw) to implement the application running on the
target platform.

Before launching the build command, configure each of these build configurations to ensure it
meets your needs. Select the specific build configuration, and click the Settings icon to open the
Build Configuration Settings dialog box. For more information on using this dialog box, refer to 
Vitis Build Configuration Settings.

Beyond the build configuration settings, many of the settings that will affect your application are
contained in the Hardware Function, accessed through the Vitis Hardware Function Settings
dialog box. It is a good idea to review each of the Settings dialog boxes as discussed in 
Configuring the Vitis IDE.

From the Assistant view, with the various options of the build configuration specified, you can

start the build process by selecting a build configuration and clicking on the Build ( ) button.
The Vitis core development kit uses a two part build process that generates the FPGA binary
(.xclbin) for the hardware kernels using the Vitis compiler v++ command, and compiles and
links the host program code using the g++ compiler.

After the build process is complete, the Assistant view shows the specific build configuration
with a green check mark to indicate it has been successfully built, as shown in the following
figure. You can open any of the build reports, such as the Compile Summary in the hardware
function, or the Link Summary in the binary container. Right-click the report in the Assistant view
and select Open in Vitis Analyzer.

Section VII: Using the Vitis IDE
Chapter 42: Building the System

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  503Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=503


Figure 103: Assistant View - Successful Builds

With the build complete, you can now run the application in the context provided by the specific
build configuration. For instance, exercise a C-model of the host program and FPGA binary
working together in the Emulation-SW build, or review the host program and the RTL kernel
code in simulation in the Emulation-HW build, or run the application on the target platform in
the Hardware build.

To run the application from within the Vitis IDE, select the build configuration, and click the Run
button ( ) to launch the default run configuration. You can also right-click the build
configuration and use the Run menu to select a specific run configuration, or edit a run
configuration as described in Vitis Run Configuration Settings.

Vitis IDE Guidance View
After building or running a specific build configuration, the Guidance tab of the Console view
displays a list of errors, warnings, and suggestions related to the build and run process. The
Guidance view is automatically populated and displayed in the tabs located in the Console view.
You can review the guidance messages to make any changes that might be needed in your code
or build process.

After running hardware emulation, the Guidance view might look like the following figure.

Section VII: Using the Vitis IDE
Chapter 42: Building the System

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  504Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=504


Figure 104: Guidance for the Build

TIP: The Guidance report can also be viewed in Vitis analyzer as discussed in the Section VI: Using the Vitis
Analyzer.

To simplify sorting through the Guidance view information, the Vitis IDE lets you search, and
filter the Guidance view to locate specific guidance rule entries. You can collapse or expand the
tree view, or even suppress the hierarchical tree representation and visualize a condensed
representation of the guidance rules. Finally, you can select what is shown in the Guidance view
by enabling or disabling the display of warnings, as well as rules that have been met, and also
restrict the specific content based on the source of the messages such as build and emulation.

By default, the Guidance view shows all guidance information for the project selected in the drop
down. To restrict the content to an individual build or run step, do the following:

1. Select Window → Preferences

2. Select the category Guidance.

3. Deselect Group guidance rule checks by project.

Working with Vivado Tools from the Vitis IDE
The Vitis core development kit calls the Vivado Design Suite during the linking process to
automatically run RTL synthesis and implementation when generating the FPGA binary
(.xclbin). You also have the option of launching the Vivado tool directly from within the Vitis
IDE to interact with the project for synthesizing and implementing the FPGA binary. There are
three commands to support interacting with the Vivado tool from the Vitis IDE, accessed through
the Xilinx → Vivado Integration menu:

Section VII: Using the Vitis IDE
Chapter 42: Building the System

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  505Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=505


• Open Vivado Project: This automatically opens the Vivado project (.xpr) associated with the
Hardware build configuration. In order for this feature to work, you must have previously
completed the Hardware build so that a Vivado project exists for the build.

Opening the Vivado project launches the Vivado IDE and opens the implementation design
checkpoint (DCP) file to edit the project, to let you manage the results of synthesis and
implementation more directly. You can then use the results of this effort for generating the
FPGA binary by selecting Import Design Checkpoint.

• Import Design Checkpoint: Lets you specify a Vivado DCP file to use as the basis for the
Hardware build, and for generating the FPGA binary.

• Import Vivado Settings: Lets you specify a configuration file used by the Vivado tools, as
described in Vitis Compiler Configuration File, for use during the linking process.

Using the Vivado IDE in standalone mode enables the exploration of various synthesis and
implementation options for further optimizing the kernel for performance and area. There are
additional options available to let you interact with the FPGA build process. See Managing FPGA
Synthesis and Implementation Results in the Vivado Tool for more information.

IMPORTANT! The optimization switches applied in the standalone project are not automatically
incorporated back into the Vitis IDE build configurations. You need to ensure that the various synthesis and
implementation properties are specified for the build using the v++ --config  file options. Fore more
information, refer to Vitis Compiler Command.

Section VII: Using the Vitis IDE
Chapter 42: Building the System

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  506Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=506


Chapter 43

Vitis IDE Debug Flow
The Vitis IDE provides easy access to the debug capabilities. When performed manually, setting
up an executable for debugging requires many steps. When you use the debug flow, these steps
are handled automatically by the Vitis IDE.

Note: The debug flow in the Vitis IDE relies on shell scripts during debugging. This requires that the setup
files, such as .bashrc or .cshrc, do not interfere with the environment setup, such as the
LD_LIBRARY_PATH.

To prepare the executable for debugging, you must change the build configurations to enable
Host debug and Kernel debug. Set these options in the Project Editor view in the Vitis IDE, as
shown in the following figure. There are two check boxes provided in the Options section for the
Active build configuration:

• Host debug enables debugging constructs in the host compilation, and is available for all build
types.

• Kernel debug enables debugging of the kernels, but is only available in software and hardware
emulation builds. To enable debug in hardware builds, use the Chipscope Debug settings as
described in Vitis Hardware Function Settings.

These checkboxes enable the -g, or --debug options in the g++ and Vitis compilers.

Figure 105: Project Editor View Debug Options

You can also enable the debug features from the Build Configuration Settings dialog box, as
shown in Vitis Build Configuration Settings, by selecting the build configuration in the Assistant
view and clicking the Settings button. Alternatively, you can double-click the build configuration.
The same two check boxes are presented. While you can enable host debug on all targets, kernel
debug is only supported for software emulation and hardware emulation build targets.

Section VII: Using the Vitis IDE
Chapter 43: Vitis IDE Debug Flow

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  507Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=507


Running a GDB session from the Vitis IDE takes care of all the required setup . It automatically
manages the environment setup for hardware or software emulation. It configures XRT to ensure
debug support when the application is running, as described in xrt.ini File, and manages the
different consoles required for the execution of the host code, the kernel code, and the debug
server.

When running on an embedded platform, the Vitis IDE also configures and launches the QEMU
system mode, the logic simulator for the PL kernel, and manages synchronization between them.
For more information, refer to launch_emulator Utility.

After setting up the build configuration for debug, clean the build directory, and rebuild the
application to ensure that the project is ready to run in the GDB debug environment.

To launch a debug session, select the build configuration in the Assistant view, and click Debug

( ). When launching the debug session in the Vitis IDE, the perspective switches to the Debug
perspective, which is configured to present additional windows to manage the different debug
views and source code windows. The following figure shows the Debug perspective.

Figure 106: Debug Perspective

Section VII: Using the Vitis IDE
Chapter 43: Vitis IDE Debug Flow

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  508Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=508


After launching the debug environment, by default, the application is stopped at the beginning of
the main function body in the host code. As with any GDB graphical front end, you can now set
breakpoints and inspect variables in the host code. The Vitis IDE enables the same capabilities
for the accelerated kernel implementation in a transparent way. For more information, refer to 
Debugging Applications and Kernels.

Note: In hardware emulation, because the C/C++/OpenCL™ kernel code is translated for efficient
implementation, breakpoints cannot be placed on all statements. Mostly, untouched loops and functions
are available for breakpoints, and only preserved variables can be accessed.

Using the Standalone Debug Flow
The Vitis IDE lets you open the debug tool for projects that have been built using the command
line flow.

Launching Standalone Debug for Embedded Platforms

The standalone debug flow supports both the embedded processor application acceleration flow
(embedded_accel) or the embedded processor software development flow (embedded). For
embedded platforms, the application is running on the Arm processor of the device, the files that
are required to boot the system, and load the application and kernel, are on a remote system, but
the debug tools are running on the local system, and the data and reports generated need to be
moved from the embedded system to the local system. The process for debugging in that
environment requires more setup and configuration.

Running standalone debug in the Vitis IDE for the embedded_accel flow is a two-step process.

1. You must first launch the QEMU emulator environment using the launch_sw_emu.sh or
the launch_hw_emu.sh script, that is generated during the --package process.

2. Then you must launch the Vitis IDE in standalone debug mode using the -debug option.

The files required for emulation of the system are also defined by the --package command.
This means that launching the standalone debug process for embedded platforms is reliant on
the output of the package process, including the emulation script.

An example command to launch the emulation environment would include the following.

launch_hw_emu.sh -pid-file emulation.pid -no-reboot -forward-port 1440 1534 
\
-enable-debug

Where:

• -enable-debug: Opens two different command shells to launch QEMU and XSIM, and
enables the GDB connection to the QEMU shell.

Section VII: Using the Vitis IDE
Chapter 43: Vitis IDE Debug Flow

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  509Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=509


• -forward-port: Forwards the TCP port from target to host for connecting to the QEMU
shell. The QEMU port default is 1440. You can change it if necessary, for example, to 1446,
but you must specify it for both the launch_emulation command or script and in the
vitis -debug command line.

• -no-reboot: Exit the QEMU environment when done.

• -pid-file: Write the process ID to the specified file, used to kill the process, if necessary.

For hardware emulation, this launches two terminal windows running the QEMU system mode,
and the Vivado simulator for simulating the PL kernel.

After the terminals and emulation are up and running, you can launch the Vitis IDE in standalone
debug mode in a separate command shell:

vitis -debug -flow embedded_accel -target hw_emu -exe vadd.elf \
-program-args vadd.xclbin -kernels vadd

Where:

• vitis -debug: Launches the Vitis IDE in standalone debug mode.

• -flow embedded_accel: Specifies the application acceleration flow on an embedded
processor platform.

• -target hw_emu: Indicates the target build being debugged.

• -exe vadd.elf: Indicates the executable application to run and debug.

• -program-args vadd.xclbin: Specifies the .xclbin file to be loaded as an argument to
the executable.

There are more options that can be specified as described invitis -debug Command Line , and
these options might be needed depending on the configuration of your application and build
environment.

The default for embedded systems searches for the executable and the .xclbin file, and any
other required input files, on the /mnt folder of the emulation environment, or the embedded
system. You can change this by specifying the -target-work-dir when launching the tool.

This launches the Vitis IDE with the Debug perspective enabled, running a debug configuration
for the specified executable application and kernel code. From this point you can do all the debug
activities like step in/step over/viewing variables/adding break points within the GUI-based
debug environment.

Launching Standalone Debug for Data Center Platforms

Launching standalone debug for Data Center applications is a bit simpler. In this case, you need
to identify the build target and the executable to run and debug. The Data Center platforms do
not require an emulation environment.

Section VII: Using the Vitis IDE
Chapter 43: Vitis IDE Debug Flow

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  510Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=vitisidedebugflow.html;a=ariaid-title3
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=510


The following example launches the Vitis standalone debug for the data_center flow targeting
the software emulation build. It specifies the executable, host.exe, which is looked for in the
current directory, and specifies the kernel to debug.

vitis -debug -flow data_center -target sw_emu -exe host.exe -kernels 
krnl_vadd

By default, the standalone debug flow looks in the current directory for specified files and to
write results. You can specify the -work-dir option to indicate a different working directory
from the default. This might be necessary when the .xclbin file is built in a different directory.

This launches the Vitis IDE with the Debug perspective enabled, letting you perform debug
activities like step in/step over/viewing variables/adding break points within the GUI-based
debug environment.

vitis -debug Command Line
Command Line Usage

The Vitis software platform standalone debug feature lets you launch the Vitis IDE for debugging
an existing command line project. In the following sections, an explanation of each of the
command line options is described with examples of launching the standalone debug
environment for different platforms and target builds.

-debug

vitis -debug

Launches the Vitis IDE in standalone debug mode.

-flow

-flow [ data_center | embedded_accel | embedded ]

Specifies the type of application project being debugged. This configures the Vitis IDE for
debugging Data Center applications running on Alveo cards; for example, application
acceleration projects running on embedded platforms, such as the zcu104_base platform, or
embedded software projects.

IMPORTANT! For embedded  and embedded_accel  flows, you must launch the QEMU system
emulator using the launch_hw_emu.sh  or launch_sw_emu.sh  script generated during the --
package  step as described in Packaging for Embedded Platforms, or using the launch_emulator 
command.

Section VII: Using the Vitis IDE
Chapter 43: Vitis IDE Debug Flow

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  511Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=511


-workspace

-workspace <workspace>

Specifies the Vitis IDE workspace to use when opening the application project in debug mode. If
this option is not specified, the tool will create a directory named workspace in the current
working directory. If a directory named workspace already exists, the tool will use that as the
workspace.

-exe

-exe <path_to_executable>

Specifies the file name and path to the application (host) executable.

For example:

vitis -debug -exe ./host.elf

-target

-target [ sw_emu | hw_emu | hw ]

Specifies the build target to use for debugging.

TIP: This only applies for data_center  and embedded_accel  flows.

For example:

vitis -debug -target hw_emu

-program-args

-program-args <program arguments>

Specifies the command line arguments to be passed to the host application at runtime. If not
specified, the tool will pass the .xclbin as a program argument when the data_center or
embedded_accel flows are selected.

For example:

vitis -debug -program-args ./xclbin in.dat

-kernels

-kernels <list of kernels>

Section VII: Using the Vitis IDE
Chapter 43: Vitis IDE Debug Flow

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  512Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=512


Specifies the list of kernels to debug. Multiple kernel names can be specified, separated by
commas. Listed kernels are defined as function-level breakpoints, so the debugger stops when
kernel execution starts. If a kernel is not specified, no function-level debugging is provided.

This is valid only for data_center flows and is not supported for embedded or
embedded_accel flows.

For example:

vitis -debug -kernels mmult madd

-work-dir

-work-dir <path_to_working_directory>

Specifies the working directory to save generated output files and reports. This is valid for
data_center and embedded_accel flows.

For the data_center flow, this is the directory where the specified .exe will be launched. For
embedded_accel flow, the launch directory will be defined by -target-work-dir.

TIP: If not specified, the current working directory is used as the working directory.

-target-work-dir

-target-work-dir <Target working directory>

This is the directory on the target board OS, and the QEMU environment, where the executable
will be launched. This is valid for embedded_accel and also for embedded flows using a Linux
OS.

TIP: If not specified, the target working directory is /mnt.

-xrt-ini

-xrt-ini <path_to_xrt.ini>

Specifies the location of the xrt.ini file. Valid for data_center and embedded_accel
flows.

If the location is specified, it will be looked for in the same directory as the application .exe or in
the working directory.

-os

-os [ linux | baremetal ]

Section VII: Using the Vitis IDE
Chapter 43: Vitis IDE Debug Flow

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  513Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=513


Specifies the OS running on the target board. This is valid for the embedded flows.

-host

-host <host_name or ip_address>

Specifies the name or IP address of the host system where the TCF agent or hw_server is
running. Valid for embedded_accel and embedded flows. If not specified, it the default host
name is localhost for bare metal, and the default IP address is 192.168.0.1 for Linux target
OS.

-port

-port <port number>

Port for TCF agent running on target Linux, or the port for hw_server running on local host for
bare metal target. If not specified, the port is 1534 for tcf-agent and 3121 for hw_server.

-launch-script

-launch-script <path_to_tcl_script>

Specify a Tcl script to be sourced before attaching the application to the debugger. This is valid
only for embedded flow with bare metal OS. The Tcl script can contain commands to initialize
the board, download the application, add breakpoints and make the target ready for the
debugger to attach.

Section VII: Using the Vitis IDE
Chapter 43: Vitis IDE Debug Flow

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  514Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=514


Chapter 44

Configuring the Vitis IDE
From the Assistant view, use the Settings button ( ) to configure a selected project or
configuration object. For more information, refer to the following topics:

• Vitis Project Settings

• Vitis Build Configuration Settings

• Vitis Run Configuration Settings

• Vitis Binary Container Settings

• Vitis Hardware Function Settings

• Vitis Toolchain Settings

Vitis Project Settings
To edit the Vitis project settings, select the project in the Assistant view and click the Settings
button ( ) to bring up the Project Settings dialog box. This dialog box lets you specify both
linking and compile options for the Vitis compiler v++ command to let you customize the project
build process.

Section VII: Using the Vitis IDE
Chapter 44: Configuring the Vitis IDE

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  515Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=515


Figure 107: Project Settings

• Project name: Name of the project. Click the link to open the Properties dialog box for the
project.

• Platform: Target platform for this project. Click the link to open the Platform Description
dialog box. Click Browse to change the platform

• Runtime: Displays the runtime used in this project.

• Number of devices: Specify the number of OpenCL accelerator devices that can be used by
the host program during emulation.

• V++ compiler options: Specify compiler options for the v++ command, as described in Vitis
Compiler Command.

• V++ linker options: Specify linking options for the v++ command.

Section VII: Using the Vitis IDE
Chapter 44: Configuring the Vitis IDE

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  516Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=516


Vitis Build Configuration Settings
To edit the settings for any of the build configurations under the project, select the build
configuration in the Assistant view and click the Settings button ( ) to bring up the Build
Configuration Settings dialog box. In this dialog box, you can enable host and kernel debug,
specify the level of information to report during the build process, and specify the level of
optimization for the hardware build.

Figure 108: Build Configuration Settings

• Target: The build configuration target as described in Build Targets.

• Host debug: Select to enable debug of the host code.

• Kernel debug: Select to enable debug of the kernel code.

Section VII: Using the Vitis IDE
Chapter 44: Configuring the Vitis IDE

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  517Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=517


• Report level: Specify what report level to generate as described in Controlling Report
Generation.

• Hardware optimization: Specify how much effort to use on optimizing the hardware.
Hardware optimization is a compute intensive task. Higher levels of optimization might result
in more optimal hardware but with increased build time. This option is only available in the
Build Configuration System.

The Build Configuration dialog box also contains links to the Compiler and Linker Toolchain
settings. These provide complete access to all the settings in the standard Eclipse environment,
and can be used to configure the Vitis core development kit as described in Vitis Toolchain
Settings. Vitis specific settings, such as the Vitis compiler and linker flags, which are not part of
the standard C/C++ tool chain, are provided in the Miscellaneous tab.

Vitis Run Configuration Settings
To edit the settings for a run configuration, select a build configuration and use the right-click
menu to navigate to Run → Run Configurations to open the Run Configurations dialog box for
the selected build configuration. The Run Configuration dialog box, as shown below, lets you
specify debug options, enable profiling of the running application, and specify the types of
profiling data to collect.

TIP: Some of the following options are available in the hardware build, or the hardware emulation build,
but are not supported in all builds.

Section VII: Using the Vitis IDE
Chapter 44: Configuring the Vitis IDE

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  518Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=518


Figure 109: Run Configuration Settings

• Name: Specifies the name of the run configuration.

• Project: Displays the current project, but can be changed to other open projects.

• Build Configuration: Specifies the currently selected build configuration, or applies your
settings to the active build configuration.

• Kernel Debug: Select to enable the waveform view for kernel debugging, or enable the live
waveform view as discussed in Waveform-Based Kernel Debugging.

• Enable profiling: Enables the collection of profile data when the application is running as
discussed in Profile Summary Report.

• Generate timeline trace: Enables the production of a timeline trace report for the application
as described in Application Timeline.

• Collect Data Transfer Trace: Specifies the collection of data transfer data as described in Vitis
Compiler General Options, and xrt.ini File.

• Collect Stall Trace: Lets you indicate the capture of stall data for a variety of conditions, as
describe in Vitis Compiler General Options, and xrt.ini File.

Section VII: Using the Vitis IDE
Chapter 44: Configuring the Vitis IDE

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  519Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=519


The Run Configuration dialog box has additional tabs to help configure the runtime environment
when running your application. In the following example, the Argument tab is shown, with
various arguments required to make the application run successfully.

Figure 110: Run Configuration Settings - Arguments

• Program arguments: Specify arguments and values required by the application. Options
involving paths are specified relative to the Working directory, as shown in the xclbin file in
the previous example.

• Automatically add binary containers to arguments: Enable this check box to have the binary
container included automatically.

• Working directory: Specify the location for the running application. This is defined
automatically by the Vitis IDE, or can be overridden by disabling the Use default check box
and specifying a path.

Section VII: Using the Vitis IDE
Chapter 44: Configuring the Vitis IDE

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  520Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=520


Vitis Binary Container Settings
To edit the settings for any of the binary containers under the project, select the binary container
in the Assistant view and click the Settings button ( ) to bring up the Binary Container Settings
dialog box. This lets you specify a new name for the binary container, and to specify link options
for the v++ command.

Figure 111: Binary Container Settings

• Name: Specifies the binary container name.

• Trace Memory: Specifies the type and amount of memory to use for storing event trace data
for profiling the application. This relates to the --trace_memory option of the Vitis
compiler.

Section VII: Using the Vitis IDE
Chapter 44: Configuring the Vitis IDE

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  521Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=521


• V++ Linker Options: Enter link options for the selected binary container, in the specified build
configuration. For more information on the available options, refer to Vitis Compiler
Command.

• V++ Linker Command Line: Displays the current v++ command line with any link options you
have specified.

TIP: The settings specified by the Binary Container Settings dialog box are written to a configuration file
used by the Vitis compiler with the --config option as described in Vitis Compiler Configuration File.
The configuration file is a link; when you place your mouse over the link, it displays the contents of the
configuration file.

Vitis Hardware Function Settings
You can edit the settings for the hardware functions of any build configurations in the project. In
the Assistant view, select a hardware function for a specific build configuration, such as
Emulation-HW, and click the Settings button ( ) to open the Hardware Function Settings dialog
box as shown in the following figure.

Figure 112: Hardware Function Settings

Section VII: Using the Vitis IDE
Chapter 44: Configuring the Vitis IDE

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  522Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=522


This dialog box lets you set options related to the hardware function in the selected build
configuration, such as specifying the number of compute units for a kernel instance, or mapping
the kernel ports to specific global memory banks. Specific options include:

• Compute Units: Number of compute units to create for the kernel, as described in Creating
Multiple Instances of a Kernel.

• Max memory ports: For OpenCL kernels, when enabled, generates a separate physical
memory interface (m_axi) for every global memory buffer declared in the kernel function
signature. If not enabled, a single physical memory interface is created for the memory
mapped kernel ports.

• Port data width: For OpenCL kernels, specify the width of the data port.

• Extra source files: Define any additional source files required by this hardware function, such
as input data files.

• V++ compiler options: Specify Vitis compiler options for the selected hardware function.

• Compute Unit Settings: The options presented in this table change when you are working in
the Emulation-SW build, the Emulation-HW build, or the Hardware build:

• Memory: Specify global memory assignments for each port of a compute unit as discussed
in Mapping Kernel Ports to Global Memory.

• SLR: Define the SLR placement for each compute unit of the kernel as discussed in 
Assigning Compute Units to SLRs.

• ChipScope Debug: Add monitors to capture hardware trace debug information. This
specifies the --dk chipscope option discussed in Vitis Compiler General Options.

• Protocol Checker: Add AXI Protocol Checker to your design. This option relates to --dk
protocol.

• Data Transfer: Add performance monitors to capture the data transferred between
compute unit and global memory. Captured data includes counters, trace, or both. This
relates to the --profile_kernel data option as discussed in Vitis Compiler General
Options.

• Execute Profiling: Add an accelerator monitor to capture the start and end of compute unit
executions. This relates to the --profile_kernel exec option.

• Stall Profiling: Add an accelerator monitor with functionality to capture stalls in the flow of
data inside a kernel, between two kernels, or between the kernel and external memory.
This relates to the --profile_kernel stall option.

• V++ Compiler Command Line: This displays the current v++ command line with any
compilation options you have specified.

Section VII: Using the Vitis IDE
Chapter 44: Configuring the Vitis IDE

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  523Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=523


TIP: The settings specified by the Hardware Function Settings dialog box are written to a configuration file
used by the Vitis compiler with the --config option as described in Vitis Compiler Configuration File.
The configuration file is a link; when you place your mouse over the link, it displays the contents of the
configuration file.

Vitis Toolchain Settings
The toolchain settings provide a standard Eclipse-based view of the project, providing all options
for the C/C++ build in the Vitis IDE.

From the Build Configuration Settings dialog box, click Edit Toolchain Compiler Settings or Edit
Toolchain Linker Settings from the bottom of the Build Configuration window to bring up the
compiler and linker Settings dialog box containing all of the C/C++ build settings. This dialog box
lets you set standard C++ paths, include paths, libraries, project wide defines, and host defines.

Figure 113: Toolchain Settings

When working in a Vitis IDE project, the five main settings under the Tool Settings tab are:

• V++ Kernel Compiler: Specify the v++command and any additional options that must be
passed when calling the v++ command for the kernel compilation process. See Vitis Kernel
Compiler and Linker Options.

Section VII: Using the Vitis IDE
Chapter 44: Configuring the Vitis IDE

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  524Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=524


• V++ Kernel Linker: Specify the v++ command and any additional options to be passed when
calling the v++ command for the kernel linking process. See Vitis Kernel Compiler and Linker
Options,

• emconfigutil: Specify the command line options for emconfigutil Utility. See emconfigutil
Settings.

• GCC Host Compiler (x86_64): Specify g++ linker arguments that must be passed during the
host compilation process. See G++ Host Compiler and Linker Settings.

• GCC Host Linker (x86_64): Specify g++ linker arguments that must be passed during the host
linking process. See G++ Host Compiler and Linker Settings.

Vitis Kernel Compiler and Linker Options
Vitis Kernel Compiler Options

The V++ Kernel Compiler section shows the v++ command and any additional options that must
be passed when calling the v++ command for the kernel compilation process. The v++ command
options can be symbols, include paths, or miscellaneous valid options, which include any of the v
++ command line options you want to add.

Figure 114: Vitis Compiler Options

• Symbols: Click Symbols under Vitis compiler to define any symbols that are passed with the –
D option when calling the v++ command.

• Includes: To add include paths to the Vitis compiler, select Includes and click the Add ( )
button.

• Miscellaneous: Any additional compile options that must be passed to the Vitis compiler can
be added as flags in the Miscellaneous section. For more information on the available compiler
options, refer to Vitis Compiler Command.

Section VII: Using the Vitis IDE
Chapter 44: Configuring the Vitis IDE

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  525Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=525


Vitis Kernel Linker Options

The Vitis kernel linker settings shows the v++ command and any additional options to be passed
when calling the v++ command for the kernel linking process.

Any additional options that need to be passed to the Vitis compiler can be added as flags in the
Miscellaneous section. For more information, refer to Vitis Compiler Command for the available
options in the linking process.

emconfigutil Settings
The emconfigutil command options can be entered in the Command field to create an
emulation configuration file as described in emconfigutil Utility. The Vitis IDE creates the
emconfig.json file by running the specified emconfigutil command before launching the
run configuration.

Figure 115: emconfigutil Settings

G++ Host Compiler and Linker Settings
G++ Compiler Options

The arguments for the g++ compiler used by the Vitis core development kit can be accessed
under the G++ Host Compiler section of the Toolchain Settings.

Section VII: Using the Vitis IDE
Chapter 44: Configuring the Vitis IDE

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  526Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=526


Figure 116: G++ Host Compiler Settings

• Dialect: Specify the command options that select the C++ language standard to use. Standard
dialect options include C++ 98, C++ 2011, and C++ 2014 (1Y).

• Preprocessor: Specify preprocessor arguments to the host compiler such as symbol
definitions. The default symbols already defined include the platform so that the host code
can check for the specific platform.

• Includes: Specify the include paths and include files.

• Optimization: Specify the compiler optimization flags and other Optimization settings.

• Debugging: Specify the debug level and other debugging flags.

• Warnings: Specify options related to compiler warnings.

• Miscellaneous: Specify any other flags that are passed to the g++ compiler.

G++ Linker Options

The linker arguments for the Vitis technology G++ Host Linker are provided through the options
available here. Specific sections include general options, libraries and library paths, miscellaneous
linker options, and shared libraries.

Section VII: Using the Vitis IDE
Chapter 44: Configuring the Vitis IDE

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  527Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=527


Chapter 45

Project Export and Import
The Vitis IDE provides a simplified method for exporting or importing one or more Vitis IDE
projects within your workspace. You can optionally include associated project build folders.

Export a Vitis Project
When exporting a project, the project is archived in a zip file with all the relevant files needed to
import to another workspace.

1. To export a project, select File → Export from the main menu.

The Export Vitis Projects dialog box opens, where you select the project or projects in the
current workspace to export as shown in the following figure.

2. To change the name for the archive, edit the Archive File field.

Section VII: Using the Vitis IDE
Chapter 45: Project Export and Import

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  528Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=528


3. To include the current build configurations, enable Include build folders at the bottom of the
window.

TIP: This can significantly increase the size of the archive, but might be necessary in some cases.

4. To create the archive with your selected files, click OK to create the archive.

The selected Vitis IDE projects will be archived in the specified file and location, and can be
imported into the Vitis IDE under a different workspace, on a different computer, by a different
user.

Import a Vitis Project
1. To import a project, select File → Import from the top menu.

This opens the Import Projects dialog box to select the import file type. There are two types
of files you can select to import:

• Vitis project exported zip files: Lets you import projects previously exported from the Vitis
IDE as discussed in Export a Vitis Project.

• Eclipse workspace or zip file: Lets you import projects from another Vitis IDE workspace.

2. The following figure shows the dialog box that is opened when you select Eclipse workspace
or zip file and click Next.

Section VII: Using the Vitis IDE
Chapter 45: Project Export and Import

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  529Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=529


3. For Select root directory, point to a workspace for the Vitis IDE, and specify the following
options as needed:

• Search for nested projects: Looks for projects inside other projects in the workspace.

• Copy projects into workspace: Creates a physical copy of the project in the current open
workspace.

• Close newly created imported projects upon completion: Closes the projects in the open
workspace after they are created.

4. Click Finish to import the projects into the open workspace in the Vitis IDE.

Section VII: Using the Vitis IDE
Chapter 45: Project Export and Import

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  530Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=530


Chapter 46

Getting Started with Examples
The Vitis core development kit is provided with example designs. These examples can:

• Be a useful learning tool for both the Vitis IDE and compilation flows such as makefile flows.

• Help you quickly get started in creating a new application project.

• Demonstrate useful coding styles.

• Highlight important optimization techniques.

Every target platform provided within the Vitis IDE contains sample designs to get you started,
and are accessible through the project creation flow as described in Create an Application
Project.

A limited number of sample designs are available in the <vitis_root>/samples folder, and
many examples are also available for download from the Xilinx GitHub repository. Each of these
designs is provided with a Makefile, so you can build, emulate, and run the code entirely on the
command line if preferred.

Installing Examples and Libraries
You can download and install sample applications from the Templates page when working
through the New Application Project wizard, or from within an existing project by selecting
Xilinx → Examples. This displays the Vitis IDE Examples dialog box as shown in the following
figure.

Section VII: Using the Vitis IDE
Chapter 46: Getting Started with Examples

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  531Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=531


Figure 117: Vitis IDE Examples

The left side of the dialog box shows Vitis IDE Examples, and has a download command for each
category. The right side of the dialog box shows the directory to where the examples
downloaded and the URL from where the examples are downloaded. Click Download next to
Vitis IDE Examples to download the examples and populate the dialog box.

The command menu at the bottom left of the Vitis IDE Examples dialog box provides two
commands to manage the repository of examples:

• Refresh: Refreshes the list of downloaded examples to download any updates from the Vitis
Examples GitHub repository.

• Reset: Deletes the downloaded examples from the .Xilinx folder.

TIP: Corporate firewalls can restrict outbound connections. Specific proxy settings might be necessary.

You can also download Vitis Accelerated Libraries from the New Application Project wizard, or
by selecting the Xilinx → Libraries menu command. For more information on the available
libraries and their uses, refer to Vitis Libraries.

Section VII: Using the Vitis IDE
Chapter 46: Getting Started with Examples

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  532Send Feedback

https://github.com/Xilinx/Vitis_Accel_Examples
https://github.com/Xilinx/Vitis_Accel_Examples
https://xilinx.github.io/Vitis_Libraries/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=532


Figure 118: Vitis IDE Libraries

Using Local Copies
While you must download the examples to add templates when you create new projects, the
Vitis IDE always downloads the examples into your local .Xilinx/vitis/<version> folder:

• On Windows: C:\Users\<user_name>\.Xilinx\vitis\<version>

• On Linux: ~/.Xilinx/vitis/<version>

The download directory cannot be changed from the Vitis IDE Examples dialog box. You might
want to download the example files to a different location from the .Xilinx folder. To perform
this, use the git command from a command shell to specify a new destination folder for the
downloaded examples:

git clone https://github.com/Xilinx/Vitis_Examples 
<workspace>/examples

When you clone the examples using the git command as shown above, you can use the
example files as a resource for application and kernel code to use in your own projects. However,
many of the files use include statements to include other example files that are managed in the
makefiles of the various examples. These include files are automatically populated into the src
folder of a project when the template is added through the New Vitis Project wizard. To make the
files local, locate the files and manually make them local to your project.

Section VII: Using the Vitis IDE
Chapter 46: Getting Started with Examples

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  533Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=533


You can find the needed files by searching for the file from the location of the cloned repository.
For example, you can run the following command from the examples folder to find the
xcl2.hpp file needed for the vadd example.

find -name xcl2.hpp

Section VII: Using the Vitis IDE
Chapter 46: Getting Started with Examples

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  534Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=534


Section VIII

Using Vitis Embedded Processor
Platforms

Revision History

The following table shows the revision history for this section.

Section Revision Summary
08/20/2020 Version 2020.1

Creating Embedded Platforms in Vitis Added.

06/24/2020 Version 2020.1

Entire section Rewrite for this version.

This section contains the following chapters:

• Vitis Embedded Platforms

• Using Vitis Embedded Platforms

• Creating Embedded Platforms in Vitis

Section VIII: Using Vitis Embedded Processor Platforms

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  535Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=535


Chapter 47

Vitis Embedded Platforms

Introduction
The Vitis™ unified software platform provides product developers an environment for creating
embedded software and accelerated applications on heterogeneous platforms based on FPGAs,
Zynq®-7000 SoCs, and Zynq® UltraScale+™ MPSoCs. This document focuses on using
embedded platform for Zynq UltraScale+ MPSoC.

Platform Types
The Vitis target platforms can be customized with unique hardware and software components.
There are two general types of platforms: fixed platforms and extensible platforms. The first type
of platform supports embedded software development and it is a direct analog to the hardware
definition file that was previously used for software development with the Xilinx® SDK tool. The
second type of platform supports application acceleration, and it includes hardware for
supporting acceleration kernels and software for a target running Linux and the Xilinx Runtime
(XRT) library. For more information on the XRT library, see https://github.com/Xilinx/XRT.

The following figure shows the traditional SDK flow for embedded software application
development. A hardware definition file (HDF) is exported from the Vivado® Design Suite. It is
used by SDK for board support package (BSP) generation and creating software applications that
apply the BSP.

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 47: Vitis Embedded Platforms

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  536Send Feedback

https://github.com/Xilinx/XRT
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=536


Figure 119: Pre-2019.2 SDK Flow

Vivado SDK
BSP

SDK
Applications

HDF

· FSBL
· PMU
· Hello_World (baremetal)
· TestApp (baremetal)
· Linux App w/ sysrootPetaLinux

· baremetal/
standalone

· FreeRTOS

· Image.ub (Linux)
· sysroot

X#####-062220X233443-102119

The following figure shows the Vitis embedded software development flow that supersedes SDK
from 2019.2 onwards. The hardware specification is now referred to as the Xilinx Shell Archive
(XSA) and is exported from a Vivado design but is formatted differently and has a .xsa filename
extension. The Vitis core tools create a platform, BSP, and software boot components such as the
FSBL and PMU firmware for this type of PMU firmware for fixed XSA and are associated with the
platform. Software applications targeting the platform can then be developed with the Vitis core
tools and do not require Linux and the XRT library. See the Vitis Embedded Software
Development Flow Documentation in the Vitis Unified Software Platform Documentation (UG1416)
for more information.

Figure 120: Vitis Embedded Software Development Flow

· Hello_World (baremetal)
· TestApp (baremetal)
· Linux Hello_World

Vivado Vitis Platform 
Project

Vitis Application 
Project

Embedded Software
Development Flow

XSA

· FSBL, BSP
· PMU, BSP
· Baremetal domain
· Linux domain
· Additional domains

PetaLinux

· rootfs
· zynqmp_fsbl.elf
· pmufw.elf
· bl31.elf
· u-boot.elf
· sysroot
· system.dtb

X23344-062320

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 47: Vitis Embedded Platforms

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  537Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=latest;d=hly1569525384514.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=latest;d=hly1569525384514.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=537


For product developers who want to accelerate their applications, platforms with hardware and
software components that support acceleration kernels can be created with the Vitis core tools.
The Vivado Design Suite is used to generate and write a second type of XSA containing a few
additional IP blocks and metadata to support kernel connectivity. The following figure shows the
acceleration software development flow.

Figure 121: Vitis Acceleration Kernel Flow

· Accelerated Apps w/
OpenCL, C, C++

· Applications for 
additional domains

Vivado Vitis Platform 
Project

Vitis Application 
Project

Application Acceleration
Development Flow

 XSA

Linux domain with XRT

PetaLinux
· rootfs with XRT
· zynqmp_fsbl.elf
· pmufw.elf
· bl31.elf
· u-boot.elf
· sysroot
· system.dtb

X23345-062320

The Vitis core tool supports application development in multiple languages (OpenCL™, C, C++)
but the applications must target a Vitis target platform. A target platform consists of hardware
and software components as shown in the following figure. The target platform view on the left
side of the page is for the Vitis embedded software development flow, whereas the right side of
page shows a platform that supports acceleration kernels. The differences include acceleration
kernel requirements of a target with Linux + XRT, metadata, and kernel interface declarations.

Note: Custom platform generation sources are available in https://github.com/Xilinx/
Vitis_Embedded_Platform_Source.

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 47: Vitis Embedded Platforms

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  538Send Feedback

https://github.com/Xilinx/Vitis_Embedded_Platform_Source
https://github.com/Xilinx/Vitis_Embedded_Platform_Source
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=538


Figure 122: Vitis Target Platforms

Extensible XSA: (Supports Acceleration Kernels)
 - IP integrator block design
 - Declared interfaces for
    acceleration kernels
 - Platform (PFM)
   metadata and properties 
Xilinx Devices
 - Zynq UltraScale+ MPSoC
 - Zynq-7000 SoC

Hardware Component

Domains:

 - Linux + XRT required for
   acceleration kernel support

Vitis Application Acceleration Development

Vitis
Platform

Software Component

Fixed XSA: (Embedded Software Development)
 - IP integrator block design

Xilinx Devices
 - Zynq UltraScale+ MPSoC
 - Zynq-7000 SoC

Hardware Component

Domains:

 - Standalone / Baremetal

 - Linux

 - FreeRTOS

Vitis Embedded Software Development

Software Component

PL

Arm
Cores

Platform
 IPPSM

I
O

DDR
CTRL

PL

Arm
Cores

Platform
 IPPSM

I
O

DDR
CTRL

X23346-062220

Figure 123: Vitis Platform Project Flow

Vivado PetaLinux Vitis/XSCT Target 
Platform

XSA

· zynqmp_fsbl.elf
· bl31.elf
· pmufw.elf
· u-boot.elf
· sysroot
· rootfs
· system.dtb

X23347-062320

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 47: Vitis Embedded Platforms

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  539Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=539


Platform Naming Convention
The platform name is used when creating acceleration applications in Vitis or targeting platforms
when using the Vitis compiler (v++). Pre-built platform images also use the same file name and
directory name.

Pre-built Vitis embedded platforms use the following naming convention.

<Vendor>_<Board>_<Feature>_<Supported Vitis Tool Version>_<Release
                        Version>

Where:

• Vendor: The board vendor. For all Xilinx-created pre-built platforms, use xilinx.

• Feature: The special function of this platform. For example:

• base indicates that it connects all possible resources for you to use in an acceleration
application.

• DFX indicates that it supports Xilinx Dynamic Function eXchange (DFX).

• Supported Vitis Tool Version: The specific version of the Vitis development platform that the
platform is designed for. This also indicates the version of the Vivado® Design Suite tools that
the pre-built platform is created by.

• Release Version: The release version of the platform. The first version is 1.

For example, the following platform names follow the naming convention:

• xilinx_zcu102_base_202010_1

• xilinx_zcu104_base_202010_1

• xilinx_zc706_base_202010_1

• xilinx_zcu102_base_dfx_202010_1

Note: Platform source code uses a git branch for versioning. The directory name is <Board>_<Feature>
(for example, zcu102_base). The platform generated from the source in https://github.com/Xilinx/
Vitis_Embedded_Platform_Source has the name xilinx_zcu102_base_202010_1.

Embedded Platform Components and
Architecture

A platform is the starting point of your Vitis design. Vitis applications are built on top of the
platforms.

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 47: Vitis Embedded Platforms

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  540Send Feedback

https://github.com/Xilinx/Vitis_Embedded_Platform_Source
https://github.com/Xilinx/Vitis_Embedded_Platform_Source
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=540


An embedded platform includes a hardware platform and a software platform.

Hardware Platform

The hardware platform is the static, unchanging portion of your hardware design. It includes the
Xilinx Support Archive (XSA) file exported from the Vivado Design Suite.

The hardware platform describes platform hardware setup and the acceleration resources that
can be used by acceleration applications, for example, Input and output interfaces, clocks, AXI
buses, and interrupts. Vitis adds kernels and infrastructure modules to the hardware design as
needed to facilitate data movement. Acceleration kernels can share data with platform IPs, but
cannot change or modify them.

Software Platform

The software platform is the environment that runs the software to control acceleration kernels
for acceleration applications. It includes the domain setup and boot components setup.

By default, all Xilinx pre-built platforms have a Linux domain that has enabled Xilinx Runtime
(XRT) so that acceleration applications can run on this environment. The pre-built binaries for
Linux kernel image and rootfs are located in a separate download file on the PetaLinux download
page. See the "Common images for Embedded Vitis platforms" section of the Xilinx download
center. Because the device tree is unique to each platform, it is provided as a component with
the Linux XRT domain inside the platform.

Linux Domain Components must be provided when there is a Linux domain in the embedded
platform. These components can be generated by PetaLinux, Yocto, or third-party frameworks.
Because these components can be shared across all Xilinx demo boards for the given FPGA
family, a common Linux component image generated by PetaLinux is provided for Zynq-7000
SoC and Zynq UltraScale+ MPSoC devices.

The following Linux images can be downloaded from the PetaLinux download page:

• Root File System (RFS): Includes binaries, libraries, and setups for a Linux file system. In the
Xilinx-provided common rootfs, XRT has been installed so that acceleration application can
run on this Linux environment.

• Kernel Image: A compiled Linux kernel. The common kernel image provided by Xilinx includes
most Xilinx peripheral drivers.

• Sysroot: Used for cross compilation. It provides the libraries to be linked when compiling
applications for a target system.

Note: Optionally, you can pack Linux domain components into embedded platforms. When creating a Linux
application in the Vitis IDE, the Linux domain components in the platform setting will be the default and
initial settings if they have been set in the platform. You can overwrite these settings with components
installed elsewhere.

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 47: Vitis Embedded Platforms

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  541Send Feedback

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=541


Xilinx pre-built embedded platforms and pre-built common Linux components are provided in
separate download files. You can regenerate the common Linux components from the platform
source files hosted on the Vitis Embedded Platform GitHub repository by setting the
environment variable COMMON_RFS_KRNL_SYSROOT=FALSE before running make .

Installing Embedded Platforms
Pre-built Vitis embedded platforms must be downloaded from the Xilinx website:

• Download required Vitis platforms from the Vitis Embedded Platforms download page.

• Download common Linux components from the "Common images for Embedded Vitis
platforms" section of the PetaLinux download page.

After you download the embedded platforms, there are three ways to include them in your
project:

• Extract the pre-built platforms to /opt/xilinx/platforms.

• Extract the pre-built platforms to any folder. Set the PLATFORM_REPO_PATHS environment
variable to the folder path.

export PLATFORM_REPO_PATHS=/path/to/platforms

• Extract the pre-built platforms to any folder. In the Vitis IDE, select Xilinx → Add Custom
Platform and select the folder path.

Common Linux components can be extracted to any folder. When you create a Linux application,
you will specify the path for the components in the Vitis New Application Wizard.

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 47: Vitis Embedded Platforms

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  542Send Feedback

https://github.com/Xilinx/Vitis_Embedded_Platform_Source
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-platforms.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=542


Chapter 48

Using Vitis Embedded Platforms

Packaging Images
A new packaging stage is added to the Vitis™ compiler (v++) in 2020.1.

In 2019.2, v++ had two stages:

• -c or --compile to compile acceleration kernels

• -l or --link to link acceleration kernels with platform logic.

In the 2020.1 release, the new stage is -p or --package. The command V++ --package
generates both boot.bin and the sd_card image files.

The --package command supports both initramfs and Ext4 rootfs images.

In the Vitis IDE, the package stage is automatically called during the build process. You can add
additional package options in the system project detail page by double-clicking the .sprj file.
Package log files, command configuration files, and output files are stored in the package
directory under the Emulation-SW, Emulation-HW or Hardware directories.

In command line mode, you can pass in package options as v++ options or configuration files. For
more detailed information about the v++ --package option, refer to the Vitis Compiler
Command or the v++ -help command, and the Xilinx Vitis Acceleration Examples GitHub
repository.

Packaging Images with Ext4 rootfs in the Vitis IDE
When ext4 rootfs is provided to the Vitis IDE, the generated sd_card.img file includes the
following:

• The xclbin file for PL kernel

• The host application

• The Linux kernel image

• The device tree

• The u-boot configuration file: boot.scr

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 48: Using Vitis Embedded Platforms

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  543Send Feedback

https://github.com/Xilinx/Vitis_Accel_Examples
https://github.com/Xilinx/Vitis_Accel_Examples
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=543


• The platform initialization script init.sh and platform name in platform_desc.txt.

Note: init.sh sets up the environment variable XILINX_XRT and copies the platform_desc.txt
file to /etc/xocl.txt. This must be executed manually.

• The ext4 rootfs in the Ext4 partition

To package an image with Ext4 rootfs in the Vitis IDE:

1. Select File → New → Application Project to create a new application project in the Vitis IDE.

2. Select the platform (for example, xilinx_zcu102_base_202010_1), and click Next.

3. Provide a name for the application project (for example, vadd)

4. For the system project selection, select Create New.

5. For the target processor, select the processor that can run the Linux domain (for example,
psu_cortexa53 SMP), and click Next.

6. In the domain page, select xrt and provide the following application settings:

• Sysroot path: (for example, xilinx-zynqmp-common-v2020.1/sysroots/
aarch64-xilinx-linux)

• Root FS (for example, xilinx-zynqmp-common-v2020.1/rootfs.ext4)

• Kernel Image (for example, xilinx-zynqmp-common-v2020.1/Image)

7. Click Next.

8. Select an application template (for example, Vector Addition).

9. Select the system project and click the Build ( ) button to build the project.

10. Verify that the sd_card.img file was created in the package directory under the
Emulation-SW, Emulation-HW or Hardware directory.

TIP: To change the path for sysroot , rootfs , or kernel  after the application project has been
created, double-click the .sprj file and change the path in the Options dialog box.

Packaging Images with initramfs rootfs in the Vitis
IDE
When initramfs rootfs (rootfs.cpio) is provided to the Vitis IDE, the generated
sd_card.img includes the following:

• The xclbin file for PL kernel

• The host application

• The Linux kernel image

• The device tree

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 48: Using Vitis Embedded Platforms

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  544Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=544


• The boot.scr

• The init.sh, platform_desc.txt, and initramfs rootfs in FAT32 partition

Note: The sd_card.img file does not contain the ext4 partition.

1. In the Vitis IDE, select File → New → Application Project to create a new application project.

2. Select the platform (for example, xilinx_zcu102_base_202010_1), and click Next.

3. Provide the application project name (for example, vadd).

4. Select Create New.

5. For the target processor, select the processor that can run the Linux domain (for example,
psu_cortexa53 SMP), and click Next.

6. In the Domain page, select the xrt domain and provide the application settings as follows:

a. Sysroot path (for example, your_linux_component_dir/sysroots/aarch64-
xilinx-linux)

b. Root FS (for example, your_linux_component_dir/rootfs.cpio.gz.u-boot)

c. Kernel Image (for example, your_linux_component_dir/Image)

7. Click Next.

8. Select the application template (for example, Vector Addition).

9. Select the system project and click the Build ( ) button to build the project.

10. Verify that the sd_card.img file was created in the package directory under the
Emulation-SW, Emulation-HW or Hardware directory.

Note: The common Linux components package does not provide initramfs rootfs. For more information
about generating initramfs rootfs, refer to PetaLinux Tools Documentation: Reference Guide (UG1144).

TIP: To change the path for sysroot , rootfs , or kernel  after the application project has been
created, double-click the .sprj  file and change the path in the Options dialog box.

Writing Images to the SD Card
You can use the Vitis unified software platform accelerated flow to target an embedded platform.
This facilitates packaging and creating an SD image with RootFS as an EXT4 partition, because
initramfs uses Double Data Rate SDRAM (DDR SDRAM) for file system storage. It limits the
real usable DDR memory for Linux kernel and applications when the file system size increases. It
cannot retain RootFS changes after reboot.

To write EXT4 RootFS to an SD Card:

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 48: Using Vitis Embedded Platforms

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  545Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=545


1. Prepare an SD card binary image file with FAT32 partition for boot and EXT4 partition for
RootFS.

2. Write SD card images to the SD card. You can use various tools to do this, such asEtcher on
Windows or dd command on Linux.

Note: Refer to Xilinx Answer Record 73711 for detailed information about these tools.

There are various ways to prepare an SD card image. You can use the v++ package tool to
generate it, or use an open source tool. A pre-built SD card image is also provided in the base
platform packag, which you can download from the Vitis Embedded Platforms download page.

The pre-built SD card image (pre-built/sd_card.img) has two partitions:

• FAT32 partition: 1 GB size, initialized with the kernel image provided by common Linux
components.

• EXT4 partition: 2GB size, initialized with RootFS provided by common Linux components.

To make the pre-built SD card image boot, you must copy the following boot components to the
FAT32 partition:

• - pre-built/BOOT.BIN

• - boot.scr, system.dtb, init.sh and platform_desc.txt in the xrt/image
directory

The pre-built SD card image can be used for evaluation usage and by Windows users. It does not
require Vitis or PetaLinux to be installed.

Note: The v++ --package with Ext4 partition is not supported on Windows.

Note: init.sh sets up the environment variable XILINX_XRT and copies the platform_desc.txt file
to /etc/xocl.txt. You must manually run this after Linux boots up before running any acceleration
applications.

Configuring the PL Kernel in DFX Platforms
and Non-DFX Platforms

The Xilinx Dynamic Function eXchange (DFX) feature can change some blocks of PL function
while keeping other areas of PL working, allowing you to configure PL kernels on the fly. To use
the DFX feature, when the xclbin file is generated, configure it with your host application. The
new kernels in the xclbin take effect immediately without requiring a reboot.

For platforms without DFX features, PL kernel must be packed into boot.bin. Copy it to the
FAT32 partition on your SD card and reboot the system. Then, configure the xclbin file with
your host application.

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 48: Using Vitis Embedded Platforms

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  546Send Feedback

https://www.balena.io/etcher/
https://www.xilinx.com/support/answers/73711.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-platforms.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=546


The xclbin file contains both bit files for PL kernel and metadata to describe these kernel
features and connections. Programming the xclbin file on DFX platforms loads the bit file and
metadata; programming on non-DFX platforms only loads the metadata.

Running an Acceleration Application on the
Board

If you are using the common Linux components that are provided by Xilinx do the following to
run an acceleration application on the platform:

1. To the SD card, write the sd_card.img generated by the Vitis compiler command v++ --
package.

2. Boot the board.

3. Run the command cd /mnt/sd-mmcblk0p1/.

4. Run the command source init.sh.

5. Run acceleration application. For example, for vector addition, run ./vadd ./
binary_container_1.xclbin.

Acceleration application uses Xilinx Runtime (XRT) to communicate with acceleration kernels. To
set up the environment for XRT, run init.sh. This command does the following:

• It sets the environment variable XILINX_XRT to /usr to allow the application to find the
XRT environment.

• It copies platform_desc.txt to /etc/xocl.txt to inform XRT which platform it is
running on.

Note: This was done automatically for embedded platforms in the 2019.2 release of Vitis. Because
automatically running init.sh may introduce security breaches, common Linux rootfs did no run
init.sh by default.

Note: If the sd_card.img file has already been written to the SD card and you are only updating the
application, you can save time in the debugging phase by copying all files from <Vitis System
Project>/Hardware/package/sd_card to FAT32 partition on SD card to replace existing files. The
Ext4 partition does not change in sd_card.img.

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 48: Using Vitis Embedded Platforms

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  547Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=547


Software Package Management in PetaLinux
rootfs

The package management feature is new for the Vitis 2020.1 release. All PetaLinux rootfs
software packages are hosted on https://petalinux.xilinx.com/sswreleases/rel-v2020/feeds. You
can install these software packages to rootfs when running Linux on the target board as long as
the board has Internet access.

To use this feature, you must enable package manager DNF in rootfs. The rootfs in Xilinx-
provided pre-built Linux components provides the DNF package management features by
default.

Note: The pre-built common RootFS for 2020.1 has an incorrect package feed URL. This is a known issue.
For information about updating the package feed URL, refer to Answer Record 75391.

Here are some basic functions you can run with the DNF package manager.

• Listing available packages: Use the command dnf repoquery.

• Installing packages from a Xilinx repository: Use the command dnf install <pkg
name>.

• Installing packages from a local package file: Use the command dnf install <pkg file
name>.

• Installing packages to sysroot: 

When packages are installed on the rootfs of a running board, target has the latest binaries
and libraries. When cross compiling on host is needed, these libraries must be added to host
side sysroot.

A sysroot_overlay script is provided in XRT to extract RPM and update sysroot. This
script will extract rpm libraries and include a file update in sysroot.

Besides XRT, this script supports all RPMs for various software packages.

• Getting the sysroot_overlay.sh: Use the command wget https://github.com/
Xilinx/XRT/blob/master/src/runtime_src/tools/scripts/
sysroots_overlay.sh.

The sysroot command description is:

./sysroots_overlay.sh --sysroot --rpms-file

where:

• --sysroot is the sysroot to be overlaid.

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 48: Using Vitis Embedded Platforms

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  548Send Feedback

https://petalinux.xilinx.com/sswreleases/rel-v2020/feeds
https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=75391.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=548


• --rpms-file is the rpms file that contains the RPM file paths to be overlaid.

Examples

The following example is a command to install updated XRT to the common sysroot:

./sysroots_overlay.sh -s sysroots/aarch64-xilinx-linux/ -r $PWD/rpm.txt

This example shows the contents of an rpm.txt file:

./xrt-dev-202010.2.6.0-r0.aarch64.rpm

./xrt-202010.2.6.0-r0.aarch64.rpm

Note:

This script works only for the local RPMs. You must download RPMs to your host machine to install them
to the common sysroot.

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 48: Using Vitis Embedded Platforms

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  549Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=549


Chapter 49

Creating Embedded Platforms in
Vitis

Platform Basics
A platform is a starting point of your design, upon which you build Vitis™ applications.

For Xilinx® demo boards, you can access pre-built base platforms on the Xilinx download center: 
https://www.xilinx.com/support/download.html. The source code of these base platforms is
available via the Xilinx GitHub site: https://github.com/Xilinx/Vitis_Embedded_Platform_Source.

Alternatively, you can create your custom Vitis embedded platforms from scratch. To do this, you
must first bring up your custom boards. Custom board bring-up and Vitis platform creation are
different jobs that require different skillsets. This guide focuses on the platform creation process
and assumes you have a brought-up board with the following base components:

• A base hardware design exported from Vivado® Design Suite

• A base software design that includes Linux kernel, root file system, and device tree

Once you have working hardware and board through a Vivado design, converting it into a Vitis
platform requires adding properties to the base components to meet the requirements of Vitis. In
general, platform creation consists of the following steps:

1. Add hardware interface parameters and interrupt support in your Vivado project and export
the XSA.

2. Update the software platform components to enable application acceleration software stacks
(enable XRT, update device tree, and so on).

3. Package and generate the platform using XSCT commands or the Vitis GUI.

TIP: For information about XSCT commands, refer to Xilinx Software Command-Line Tool in the Embedded
Software Development flow of the Vitis Unified Software Platform Documentation (UG1416).

The properties and software stacks added above are used by Vitis to recognize the resources in
platforms and take control of them.

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 49: Creating Embedded Platforms in Vitis

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  550Send Feedback

https://www.xilinx.com/support/download.html
https://github.com/Xilinx/Vitis_Embedded_Platform_Source
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=upu1569395223804.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=550


Note: Performing these steps in order—starting with the Vivado design and then adding PetaLinux base
components—simplifies debugging if any issues occur during the platform creation process.

Platform Creation Requirements
The base design on which you create a Vitis platform will be static after the platform creation
process is complete.

Vitis does not modify existing components in the base system; it only adds more components
and links to its open interfaces.

The following table shows the workflows you can use to validate the base system on your board.

Workflow Development Validation
Basic board bring-up Processor basic parameter setup. Standalone Hello world and

Memory Test application run
properly.

Advanced hardware setup Enable advanced IO in Processing System (such as
USB, Ethernet, Flash, PCIe, or RC).
Add IO related IP in PL (such as MIPI, EMAC, or
HDMI_TX).
Add non-Vitis IP (such as AXI BRAM Controller, or
VPSS).

If these IP have standalone drivers,
test them.

Base software setup Create PetaLinux project based on hardware
platform.
Enable kernel drivers.
Configure boot mode.
Configure rootfs.

Linux boots up successfully.
Peripherals work properly in Linux.

Base Component Requirements

Every hardware platform design must contain a Processing System IP block from the IP catalog.

• Zynq® UltraScale+™ MPSoC and Zynq-7000 SoC devices are supported.

• MicroBlaze™ processors are not supported for controlling acceleration kernels, but can be part
of the base hardware.

Creating an Embedded Platform
Adding Hardware Interfaces
The following table shows the possible Vitis inputs and the minimal requirements for an
acceleration embedded platform.

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 49: Creating Embedded Platforms in Vitis

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  551Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=551


Inputs Types Vitis Can Use Minimum Requirements for
AXI MM Kernels

Control Interfaces AXI Master Interfaces from PS or from AXI
Interconnect IP or SmartConnect IP

One AXI4-Lite Master for kernel
control

Memory Interfaces AXI Slave Interfaces One memory interface for data
exchange

Streaming Interfaces AXI4-Stream Interfaces Not required

Clock Multiple clock signals One clock

Interrupt Multiple interrupt signals One Interrupt

General Requirements

• Every IP used in the platform design that is not part of the standard Vivado IP catalog must be
local to the Vivado Design Suite project. References to IP repository paths external to the
project are not supported when creating expandable XSA.

• Any external hardware port interface to the Vitis platform must be an AXI4, AXI4-Lite, AXI4-
Stream, clock, or reset type of interface.

Custom bus-type or hardware interfaces must remain internal within the platform design and
cannot be declared for use by the v++ linker. If a data bus with custom bus type needs to
connect to kernels, it must be converted to an AXI4, AXI4-Lite, or AXI4-Stream interface.

Control Interface Requirements

Every platform must declare at least one general-purpose AXI master port (M_AXI_GP) from the
Processing System IP, or have an interconnect IP connected to such an AXI master port. These
are used for software control of accelerator IP.

• AXI Master port (M_AXI_GP) is defined as an element of PFM.AXI_PORT.

• The sptags property for M_AXI_GP port is not supported.

Memory Interface Requirements

Every platform must declare at least one memory interface with AXI Slave port (S_AXI). This
used to exchange data between ARM processors in PS and kernels in PL. PS DDR is used in most
cases.

• AXI Slave port (S_AXI) is defined as an element of PFM.AXI_PORT.

• The sptags property for S_AXI interfaces is supported by v++, which can find the specific
memory interface during linking stage by the sptags name. If the sptags property is not
specified in the hardware design, v++ can still link the design using the default linking
strategy.

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 49: Creating Embedded Platforms in Vitis

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  552Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=552


The following is an example of the PFM.AXI_PORT setting for control interface and memory
interface.

set_property PFM.AXI_PORT {
M_AXI_HPM1_FPD {memport "M_AXI_GP"} 
S_AXI_HPC0_FPD {memport "S_AXI_HPC" sptag "HPC0" memory "zynq_ultra_ps_e_0 
HPC0_DDR_LOW"}  
S_AXI_HPC1_FPD {memport "S_AXI_HPC" sptag "HPC1" memory "zynq_ultra_ps_e_0 
HPC1_DDR_LOW"}  
S_AXI_HP0_FPD {memport "S_AXI_HP" sptag "HP0" memory "zynq_ultra_ps_e_0 
HP0_DDR_LOW"}  
S_AXI_HP1_FPD {memport "S_AXI_HP" sptag "HP1" memory "zynq_ultra_ps_e_0 
HP1_DDR_LOW"}  
S_AXI_HP2_FPD {memport "S_AXI_HP" sptag "HP2" memory "zynq_ultra_ps_e_0 
HP2_DDR_LOW"}
} [get_bd_cells /ps_e]

Note:

• zynq_ultra_ps_e_0 is the instance name of the Zynq UltraScale+ MPSoC module.

• HPC0_DDR_LOW is the address range name.

Streaming Interface Requirements

• AXI streaming interface is supported in Vitis platforms but it is not required.

• Streaming kernel interfaces are specified with the PFM.AXIS_PORT sptag interface property
and a matching connectivity.sc command argument to the v++ linker.

Clock Requirements

• At least one clock must be enabled in the PFM.CLOCK property.

• At least one clock must be set as default in the PFM.CLOCK property.

Example code:

set_property PFM.CLOCK {pl_clk0 {id "0" is_default "true" proc_sys_reset "/
proc_sys_reset_0" status "fixed"}} [get_bd_cells /zynq_ultra_ps_e_0]

Note: In the 2020.1 version of Vitis, it is a known issue that the CLOCK property of XCLBIN is incorrect if
the platform has only one clock. In this situation, Xilinx Runtime (XRT) reports an error when programing
XCLBIN. To work around this issue, you must enable two or more PFM clocks.

Interrupt Requirements

Vitis provides a way to automatically connect the kernel output IRQ signal to an interrupt
controller during the link stage. To make this automation work properly, the following rules must
be applied:

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 49: Creating Embedded Platforms in Vitis

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  553Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=553


• Add one AXI Interrupt Controller to the block diagram.

○ Connect the IRQ signal to the IRQ input of the processing system.

○ Set the PFM.IRQ property, and give the platform information about the interrupt controller
name, interrupt input pin name, and bus range, for future kernel IRQ auto-connection in
the v++ link stage.

# Command Syntax
set_property PFM.IRQ {pin_name {id id_number}} bd_cell
set_property PFM.IRQ {pin_name {id id_number range irq_count}} bd_cell
# Example
set_property PFM.IRQ {intr {id 0 range 32}} [get_bd_cells /axi_intc_0]

• To allow software to use these interrupts, you must update the device tree to include the zocl
node, as described in Updating Software Components.

Export Expandable XSA

There are two kinds of XSA formats: fixed XSA for software development and expandable XSA
for acceleration projects. To create a Vitis embedded platform for acceleration flow, you must
use an expandable XSA. You can do this in the Export wizard in the Vitis IDE.

To do this:

1. Select File → Export → Export Hardware.

2. For the platform type, select Expandable.

3. For the platform state, select Pre-Synthesis.

Note: If you executed "Run Implementation" in the previous step, select Post-implementation instead.

4. Input the platform properties.

5. Input the XSA file name and the export target directory.

You can do this in the command line using the following command:

# Pre-synthesis
write_hw_platform -unified <output.xsa>  
# Post-implementation, combine bit file into XSA
write_hw_platform -unified -include_bit <output.xsa>

In most cases, pre-synthesis is enough for embedded platforms, because the v++ link implements
the linked PL design from scratch. Only DFX platforms will reuse platform implementation.
However, if a platform runs through implementation, it will have platform resource utilization
information, which can be reported using the platforminfo tool.

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 49: Creating Embedded Platforms in Vitis

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  554Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=554


Updating Software Components
Adding XRT to the Root Filesystem

Vitis acceleration application uses XRT to control hardware. XRT provides a unified programming
interface across data center to embedded use cases.

You must add the XRT kernel driver (zocl) and the user space library (xrt-dev) to rootfs and
sysroot. Package xrt-dev enables you to compile Vitis applications that use the XRT API.

Updating the Device Tree for ZOCL

The zocl driver interface requires a device tree node to enable the interrupt connection.

The following is an example of the zocl device node.

&amba {
    zyxclmm_drm {
        compatible = "xlnx,zocl";
        status = "okay";
        interrupt-parent = <&axi_intc_0>;
        interrupts = <0  4>, <1  4>, <2  4>, <3  4>,
                 <4  4>, <5  4>, <6  4>, <7  4>,
                 <8  4>, <9  4>, <10 4>, <11 4>,
                 <12 4>, <13 4>, <14 4>, <15 4>,
                 <16 4>, <17 4>, <18 4>, <19 4>,
                 <20 4>, <21 4>, <22 4>, <23 4>,
                 <24 4>, <25 4>, <26 4>, <27 4>,
                 <28 4>, <29 4>, <30 4>, <31 4>;
    };
};

For more information, refer to the XRT documentation: https://xilinx.github.io/XRT/master/html/
yocto.html.

Declaring the Platform with /etc/xocl.txt

The platform name must be written into /etc/xocl.txt in the embedded platform rootfs, so
that XRT knows which platform it is. This information will be used for compatibility check when
loading xclbin file for kernel configuration.

Setting Up XILINX_XRT Envrionment Variable

XRT uses the XILINX_XRT environment variable to find the XRT libraries. On embedded
platforms, XILINX_XRT must point to /usr.

Adjusting the CMA Size

XRT uses CMA for buffer object allocation. You must reserve sufficient memory for CMA in
bootargs or the device tree to prevent running out of memory during acceleration application
run time.

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 49: Creating Embedded Platforms in Vitis

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  555Send Feedback

https://xilinx.github.io/XRT/master/html/yocto.html
https://xilinx.github.io/XRT/master/html/yocto.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=555


Packaging a Vitis Acceleration Platform
With all requirements prepared for Vitis acceleration platforms, you can package them together
and generate the final Vitis acceleration platform. You can do this using either the Vitis IDE or
the Xilinx Software Command-Line Tool (XSCT).

• In the Vitis IDE, select File → New → Platform Project to create a Vitis platform.

• Using XSCT, you can use the platform command to create a platform and the domain
command to add domains into a platform. For more information about XSCT, refer to Xilinx
Software Command-Line Tool in the Embedded Software Development flow of the Vitis
Unified Software Platform Documentation (UG1416)

The platform is an encapsulation of multiple hardware and software components. This
capsulation makes it easier to hand off deliveries from hardware-oriented engineers to
application developers.

The following files and information are packaged into the platform.

• Hardware Specification: This is an expandable XSA file.

• Software Components: These are added to the platform as a Linux domain that enables
OpenCL™ runtime.Software components include the following:

• Boot components

○ BIF file that describes the boot components and their properties for Bootgen to
generate the boot.bin file.

○ A boot components directory that includes all the files described in the BIF file.

• Image directory (optional): Contents in this directory will be copied into the FAT32
partition of the final SD card image.

• Linux domain: The platform requires a Linux domain. The kernel, RootFS, and sysroot info
can be added when creating a platform, or when creating an application.

• Emulation support files (optional)

Root Filesystem

FAT32 and Ext4 partition types are supported by Vitis. The root filesystem is optional in platform
creation step because it can be assigned during Vitis application creation step.

An image directory needs to be set during platform creation. All contents in this directory will be
packaged into final SD card image. If the target file system is FAT32, the files will be placed to SD
card root directory; if the target file system is Ext4, the files will be placed to root directory of the
first FAT32 partition.

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 49: Creating Embedded Platforms in Vitis

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  556Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=upu1569395223804.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=upu1569395223804.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=556


Boot Components

A BIF file must be provided so that the application build process can package the boot image.

The following is an example of a BIF file:

/* linux */
the_ROM_image:
{
  [fsbl_config] a53_x64
  [bootloader] <fsbl.elf>
  [pmufw_image] <pmufw.elf>
  [destination_device=pl] <bitstream>
  [destination_cpu=a53-0, exception_level=el-3, trustzone] <bl31.elf>
  [destination_cpu=a53-0, exception_level=el-2] <u-boot.elf>
}

A boot components directory, including all the files described in the BIF, should also be provided.
In this example, the components directory provides fsbl.elf, pmufw.elf, bl31.elf, and u-
boot.elf. These boot components can be generated by PetaLinux.

In the Vitis application building and packaging state, v++ looks for the files in the boot
components directory and replaces the placeholders with real file names and paths. It then calls
Bootgen to generate BOOT.BIN.

Testing Your Platform
Before delivering the platform to the application developers, you should run some basic platform
tests to make sure it works properly for acceleration applications.

Generally, we need to make sure the platform can pass these tests:

• Boot test: The Vivado project generated implementation result BIT file (from Adding
Hardware Interfaces) and PetaLinux generated images (from Updating Software Components)
should be able to successfully boot to the Linux console.

• Platforminfo test: The platform generated in Packaging a Vitis Acceleration Platform should
have a proper platforminfo report for clock and memory information.

• XRT basic test: The XRT xbutil query utility should be able to run on the target board and
properly report platform information.

• Vadd test: Use Vitis to generate a vector addition sample application with the platform. The
generated application and xclbin should print test pass on the board.

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 49: Creating Embedded Platforms in Vitis

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  557Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=557


Special Considerations for Embedded Platform
Creation
Divide Logic Functions to Platform and Kernel

While the designs on FPGA and SoC are getting more complex, it is common for multiple
developers or teams to work on a design together. The Vitis software platform provides a clear
boundary for application developers and platform developers. Platform developers might include
board developers, BSP developers, system software developers, and so on.

In the view of a system architect, some logic functions might be in a grey area: they can be
packaged grouped with platforms, or they can work as an acceleration kernel. To help divide the
system blocks, here are some general guidelines.

• The basic consideration for classifying a function as a kernel or platform is whether it is an
application-related logic.

• Platforms should be more stable than applications. Application function changes should only
happen in the software and kernel.

• Platforms abstract hardware. When changing a hardware board, the application should need
no change, or very little change if necessary, to target to the new hardware.

• Follow constraints and limitations of the Vitis tool. For example:

○ Only three types of interfaces are supported by Vitis acceleration kernels: AXI MM, AXI4-
Lite, and AXI4-Stream.

○ AXI Kernel does not support external IO pins.

The following table shows the recommended platforms and kernels for logic types.

Logic Platform Kernel
Hard Processors (PS of Zynq and Zynq
UltraScale+ MPSoC)

Only in Platform

Soft Processors Preferred in Platform OK as an RTL kernel

IO Block (External pins, MIPI, PHY, etc.) Only in Platform

Related IP for IO Block (DMA for PCIe,
MAC for Ethernet, etc.)

Generally in platform because the
interface between IO and IP are not
AXI.

OK as Kernel if the interfaces between
IO block and IP are AXI.

IP with non-AXI interface Only in Platform OK if the interface can be changed to
AXI MM or AXI4-Stream

Traditional memory mapped IP which
has Linux driver (VPSS, etc.)

Only in Platform

HLS AXI memory mapped IP OK in kernel; need low-level control. Preferred as Kernel

Acceleration memory mapped IP
follows Vitis kernel register standard
and open to XRT

OK in kernel; need low-level control. Preferred as Kernel

Vitis Libraries Only work as Kernel

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 49: Creating Embedded Platforms in Vitis

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  558Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=558


Logic Platform Kernel
Free running IP with AXI4-Stream
interface

OK OK

Section VIII: Using Vitis Embedded Processor Platforms
Chapter 49: Creating Embedded Platforms in Vitis

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  559Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=559


Section IX

Migrating to a New Target Platform
Revision History

The following table shows the revision history for this section.

Section Revision Summary
08/20/2020 Version 2020.1

Entire section No updates to this section.

06/24/2020 Version 2020.1

Entire section Editorial updates only. No technical content updates.

06/03/2020 Version 2020.1

Entire section Editorial updates only. No technical content updates.

Introduction

This migration content is intended for users who need to migrate their accelerated Vitis™
technology application from one target platform to another. For example, moving an application
from an Alveo™ U200 Data Center accelerator card, to an Alveo U280 card.

The following sections are included:

• Design Migration: An overview of the Design Migration Process including the physical aspects
of FPGA devices.

• Migrating Releases: Any changes to the host code and design constraints if a new release is
used.

• Modifying Kernel Placement: Controlling kernel placements and DDR interface connections.

• Address Timing: Timing issues in the new target platform which might require additional
options to achieve performance.

Section IX: Migrating to a New Target Platform

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  560Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=560


Chapter 50

Design Migration
When migrating an application implemented in one target platform to another, it is important to
understand the differences between the target platforms and the impact those differences have
on the design.

Key considerations:

• Is there a change in the release?

• Does the new target platform contain a different target platform?

• Do the kernels need to be redistributed across the Super Logic Regions (SLRs)?

• Does the design meet the required frequency (timing) performance in the new platform?

The following diagram summarizes the migration flow described in this guide and the topics to
consider during the migration process.

Section IX: Migrating to a New Target Platform
Chapter 50: Design Migration

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  561Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=561


Figure 124: Target Platform Migration Flowchart

Start

Host code 
migration

Migrate 
Release?

Release 
migration

New target 
platform?

Modify kernel 
placement

Synthesize and 
run design

Timing met?Address timing

Done

Yes

Yes

Yes

No

No

No

X21401-092519

IMPORTANT! Before starting to migrate a design, it is important to understand the architecture of an
FPGA and the target platform.

Understanding an FPGA Architecture
Before migrating any design to a new target platform, you should have a fundamental
understanding of the FPGA architecture. The following diagram shows the floorplan of a Xilinx®

FPGA device. The concepts to understand are:

• SSI Devices

• SLRs

• SLR routing resources

• Memory interfaces

Section IX: Migrating to a New Target Platform
Chapter 50: Design Migration

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  562Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=562


Figure 125: Physical View of Xilinx FPGA with Four SLR Regions

Memory 
Bank 3

SLR3

Memory 
Bank 2

SLR2

Memory 
Bank 1

SLR1

Memory 
Bank 0

SLR0

Intra SLR 
Route

SLR 
Route

X22081-120418

TIP: The FPGA floorplan shown above is for a SSI device with four SLRs where each SLR contains a DDR
Memory interface.

Stacked Silicon Interconnect Devices

A SSI device is one in which multiple silicon dies are connected together through silicon
interconnect, and packaged into a single device. An SSI device enables high-bandwidth
connectivity between multiple die by providing a much greater number of connections. It also
imposes much lower latency and consumes dramatically lower power than either a multiple
FPGA or a multi-chip module approach, while enabling the integration of massive quantities of
interconnect logic, transceivers, and on-chip resources within a single package. The advantages
of SSI devices are detailed in Xilinx Stacked Silicon Interconnect Technology Delivers Breakthrough
FPGA Capacity, Bandwidth, and Power Efficiency (WP380).

Section IX: Migrating to a New Target Platform
Chapter 50: Design Migration

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  563Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp380_Stacked_Silicon_Interconnect_Technology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=563


Super Logic Region

An SLR is a single FPGA die slice contained in an SSI device. Multiple SLR components are
assembled to make up an SSI device. Each SLR contains the active circuitry common to most
Xilinx FPGA devices. This circuitry includes large numbers of:

• LUTs

• Registers

• I/O Components

• Gigabit Transceivers

• Block Memory

• DSP Blocks

One or more kernels can be implemented within an SLR. A single kernel cannot be implemented
across multiple SLRs.

SLR Routing Resources

The custom hardware implemented on the FPGA is connected via on-chip routing resources.
There are two types of routing resources in an SSI device:

• Intra-SLR Resources: Intra-SLR routing resource are the fast resources used to connect the
hardware logic. The Vitis technology automatically uses the most optimal resources to
connect the hardware elements when implementing kernels.

• Super Long Line (SLL) Resources: SLLs are routing resources running between SLRs, used to
connect logic from one region to the next. These routing resources are slower than intra-SLR
routes. However, when a kernel is placed in one SLR, and the DDR it connects to is in another,
the Vitis technology automatically implements dedicated hardware to use SLL routing
resources without any impact to performance. More information on managing placement are
provided in Modifying Kernel Placement.

Memory Interfaces

Each SLR contains one or more memory interfaces. These memory interfaces are used to connect
to the DDR memory where the data in the host buffers is copied before kernel execution. Each
kernel will read data from the DDR memory and write the results back to the same DDR
memory. The memory interface connects to the pins on the FPGA and includes the memory
controller logic.

Section IX: Migrating to a New Target Platform
Chapter 50: Design Migration

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  564Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=564


Understanding Target Platforms
In the Vitis technology, a target platform is the hardware design that is implemented onto the
FPGA before any custom logic, or accelerators are added. The target platform defines the
attributes of the FPGA and is composed of two regions:

• Static region which contains kernel and device management logic.

• Dynamic region where the custom logic of the accelerated kernels is placed.

The figure below shows an FPGA with the target platform applied.

Figure 126: Target Platform on an FPGA with Four SLR Regions

Static 
Region 
(Target 

Platform)

Memory 
Bank 3

SLR3

Memory 
Bank 2

SLR2

Memory 
Bank 1

SLR1

Memory 
Bank 0

SLR0

Dynamic 
Region

X22082-092519

Section IX: Migrating to a New Target Platform
Chapter 50: Design Migration

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  565Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=565


The target platform, which is a static region that cannot be modified, contains the logic required
to operate the FPGA, and transfer data to and from the dynamic region. The static region, shown
above in gray, might exist within a single SLR, or as in the above example, might span multiple
SLRs. The static region contains:

• DDR memory interface controllers

• PCIe® interface logic

• XDMA logic

• Firewall logic, etc.

The dynamic region is the area shown in white above. This region contains all the reconfigurable
components of the target platform and is the region where all the accelerator kernels are placed.

Because the static region consumes some of the hardware resources available on the device, the
custom logic to be implemented in the dynamic region can only use the remaining resources. In
the example shown above, the target platform defines that all four DDR memory interfaces on
the FPGA can be used. This will require resources for the memory controller used in the DDR
interface.

Details on how much logic can be implemented in the dynamic region of each target platform is
provided in the Vitis 2020.1 Software Platform Release Notes. This topic is also addressed in 
Modifying Kernel Placement.

Section IX: Migrating to a New Target Platform
Chapter 50: Design Migration

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  566Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=566


Chapter 51

Migrating Releases
Before migrating to a new target platform, you should also determine if you will need to target
the new platform to a different release of the Vitis technology. If you intend to target a new
release, Xilinx highly recommends to first target the existing platform using the new software
release to confirm there are no changes required, and then migrate to a new target platform.

There are two steps to follow when targeting a new release with an existing platform:

• Host Code Migration

• Release Migration

IMPORTANT! Before migrating to a new release, Xilinx recommends that you review the Vitis 2020.1
Software Platform Release Notes.

Host Code Migration
The XILINX_XRT environment variable is used to specify the location of the XRT library
environment and must be set before you compile the host code. When the XRT library
environment has been installed, the XILINX_XRT environment variable can be set by sourcing
the /opt/xilinx/xrt/setup.csh, or /opt/xilinx/xrt/setup.sh file as appropriate.
Secondly, ensure that your LD_LIBRARY_PATH variable also points to the XRT library
installation area.

To compile and run the host code, source the <INSTALL_DIR>/settings64.csh or
<INSTALL_DIR>/settings64.sh file from the Vitis installation.

If you are using the GUI, it will automatically incorporate the new XRT library location and
generate the makefile when you build your project.

However, if you are using your own custom makefile, you must use the XILINX_XRT
environment variable to set up the XRT library.

• Include directories are now specified as: -I${XILINX_XRT}/include and -I$
{XILINX_XRT}/include/CL

• Library path is now: -L${XILINX_XRT}/lib

• OpenCL library will be: libxilinxopencl.so, use -lxilinxopencl in your makefile

Section IX: Migrating to a New Target Platform
Chapter 51: Migrating Releases

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  567Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=567


Release Migration
After migrating the host code, build the code on the existing target platform using the new
release of the Vitis technology. Verify that you can run the project in the Vitis unified software
platform using the new release, ensure it completes successfully, and meets the timing
requirements.

Issues which can occur when using a new release are:

• Changes to C libraries or library files.

• Changes to kernel path names.

• Changes to the HLS pragmas or pragma options embedded in the kernel code.

• Changes to C/C++/OpenCL compiler support.

• Changes to the performance of kernels: this might require adjustments to the pragmas in the
existing kernel code.

Address these issues using the same techniques you would use during the development of any
kernel. At this stage, ensure the throughput performance of the target platform using the new
release meets your requirements. If there are changes to the final timing (the maximum clock
frequency), you can address these when you have moved to the new target platform. This is
covered in Address Timing.

Section IX: Migrating to a New Target Platform
Chapter 51: Migrating Releases

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  568Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=568


Chapter 52

Modifying Kernel Placement
The primary issue when targeting a new platform is ensuring that an existing kernel placement
will work in the new target platform. Each target platform has an FPGA defined by a static region.
As shown in the figure below, the target platform(s) can be different.

• The target platform on the left has four SLRs, and the static region is spread across all four
SLRs.

• The target platform on the right has only three SLRs, and the static region is fully-contained in
SLR1.

Section IX: Migrating to a New Target Platform
Chapter 52: Modifying Kernel Placement

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  569Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=569


Figure 127: Comparison of Target Platforms of the Hardware Platform

Static 
Region 
(Target 

Platform)

Memory 
Bank 3

SLR3

Memory 
Bank 2

SLR2

Memory 
Bank 1

SLR1

Memory 
Bank 0

SLR0

Dynamic 
Region

Static 
Region 
(Target 

Platform)

Memory 
Bank 2

SLR2

Memory 
Bank 1

SLR1

Memory 
Bank 0

SLR0

Dynamic 
Region

X22083-092519

This section explains how to modify the placement of the kernels.

Implications of a New Hardware Platform
The figure below highlights the issue of kernel placement when migrating to a new target
platform. In the example below:

• Existing kernel, kernel_B, is too large to fit into SLR2 of the new target platform because most
of the SLR is consumed by the static region.

• The existing kernel, kernel_D, must be relocated to a new SLR because the new target
platform does not have four SLRs like the existing platform.

Section IX: Migrating to a New Target Platform
Chapter 52: Modifying Kernel Placement

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  570Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=570


Figure 128: Migrating Platforms – Kernel Placement

Static 
Region 
(Target 

Platform)

Memory 
Bank 3

SLR3

Memory 
Bank 2

SLR2

Memory 
Bank 1

SLR1

Memory 
Bank 0

SLR0

Static 
Region 
(Target 

Platform)

Memory 
Bank 2

SLR2

Memory 
Bank 1

SLR1

Memory 
Bank 0

SLR0

kernel_D

kernel_C

kernel_B

kernel_A

kernel_D

kernel_C

kernel_B

kernel_A

X

X

X22084-092519

When migrating to a new platform, you need to take the following actions:

• Understand the resources available in each SLR of the new target platform, as documented in
the Vitis 2020.1 Software Platform Release Notes.

• Understand the resources required by each kernel in the design.

• Use the v++ --config option to specify which SLR each kernel is placed in, and which DDR
bank each kernel connects to. For more details, refer to Assigning Compute Units to SLRs and 
Mapping Kernel Ports to Global Memory.

These items are addressed in the remainder of this section.

Section IX: Migrating to a New Target Platform
Chapter 52: Modifying Kernel Placement

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  571Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=571


Determining Where to Place the Kernels
To determine where to place kernels, two pieces of information are required:

• Resources available in each SLR of the hardware platform (.xsa).

• Resources required for each kernel.

With these two pieces of information you will then determine which kernel or kernels can be
placed in each SLR of the target platform.

Keep in mind when performing these calculation that 10% of the available resources can be used
by system infrastructure:

• Infrastructure logic can be used to connect a kernel to a DDR interface if it has to cross an
SLR boundary.

• In an FPGA, resources are also used for signal routing. It is never possible to use 100% of all
available resources in an FPGA because signal routing also requires resources.

Available SLR Resources

The resources available in each SLR of the various platforms supported by a release can be found
in the Vitis 2020.1 Software Platform Release Notes. The table shows an example target
platform. In this example:

• SLR description indicates which SLR contains static and/or dynamic regions.

• Resources available in each SLR (LUTs, Registers, RAM, etc.) are listed.

This allows you to determine what resources are available in each SLR.

Table 82: SLR Resources of a Hardware Platform

Area SLR 0 SLR 1 SLR 2
SLR description Bottom of device; dedicated to

dynamic region.
Middle of device; shared by
dynamic and static region
resources.

Top of device; dedicated to
dynamic region.

Dynamic region
Pblock name

pfa_top_i_dynamic_region_pblock
_dynamic_SLR0

pfa_top_i_dynamic_region_pblock
_dynamic_SLR1

pfa_top_i_dynamic_region_pblock
_dynamic_SLR2

Compute unit
placement
syntax

set_property
CONFIG.SLR_ASSIGNMENTS
SLR0[get_bd_cells<cu_name>]

set_property
CONFIG.SLR_ASSIGNMENTS
SLR1[get_bd_cells<cu_name>]

set_property
CONFIG.SLR_ASSIGNMENTS
SLR2[get_bd_cells<cu_name>]

Global memory resources available in dynamic region

Memory
channels;
system port
name

bank0 (16 GB DDR4) bank1 (16 GB DDR4, in static
region)
bank2 (16 GB DDR4, in dynamic
region)

bank3 (16 GB DDR4)

Section IX: Migrating to a New Target Platform
Chapter 52: Modifying Kernel Placement

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  572Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=572


Table 82: SLR Resources of a Hardware Platform (cont'd)

Area SLR 0 SLR 1 SLR 2
Approximate available fabric resources in dynamic region

CLB LUT 388K 199K 388K

CLB Register 776K 399K 776K

Block RAM Tile 720 420 720

UltraRAM 320 160 320

DSP 2280 1320 2280

Kernel Resources

The resources for each kernel can be obtained from the System Estimate report.

The System Estimate report is available in the Assistant view after either the Hardware Emulation
or Hardware run are complete. An example of this report is shown below.

Figure 129: System Estimate Report

• FF refers to the CLB Registers noted in the platform resources for each SLR.

• LUT refers to the CLB LUTs noted in the platform resources for each SLR.

• DSP refers to the DSPs noted in the platform resources for each SLR.

• BRAM refers to the block RAM Tile noted in the platform resources for each SLR.

This information can help you determine the proper SLR assignments for each kernel.

Assigning Kernels to SLRs
Each kernel in a design can be assigned to an SLR region using the connectivity.slr option
in a configuration file specified for the v++ --config command line option. Refer to Assigning
Compute Units to SLRs for more information.

When placing kernels, Xilinx recommends assigning the specific DDR memory bank that the
kernel will connect to using the connectivity.sp config option as described in Mapping
Kernel Ports to Global Memory.

Section IX: Migrating to a New Target Platform
Chapter 52: Modifying Kernel Placement

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  573Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=573


For example, the figure below shows an existing target platform that has four SLRs, and a new
target platform with three SLRs. The static region is also structured differently between the two
platforms. In this migration example:

• Kernel_A is mapped to SLR0.

• Kernel_B, which no longer fits in SLR1, is remapped to SLR0, where there are available
resources.

• Kernel_C is mapped to SLR2.

• Kernel_D is remapped to SLR2, where there are available resources.

The kernel mappings are illustrated in the figure below.

Figure 130: Mapping of Kernels Across SLRs

Static 
Region 
(Target 

Platform)

Memory 
Bank 3

SLR3

Memory 
Bank 2

SLR2

Memory 
Bank 1

SLR1

Memory 
Bank 0

SLR0

Static 
Region 
(Target 

Platform)

Memory 
Bank 2

SLR2

Memory 
Bank 1

SLR1

Memory 
Bank 0

SLR0

kernel_D

kernel_C

kernel_B

kernel_A

kernel_D

kernel_C

kernel_B

kernel_A

X22085-092519

Section IX: Migrating to a New Target Platform
Chapter 52: Modifying Kernel Placement

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  574Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=574


Specifying Kernel Placement

For the example above, the configuration file to assign the kernels would be similar to the
following:

[connectivity]
nk=kernel:4:kernel_A.lernel_B.kernel_C.kernel_D

slr=kernel_A:SLR0
slr=kernel_B:SLR0
slr=kernel_C:SLR2
slr=kernel_D:SLR2

The v++ command line to place each of the kernels as shown in the figure above would be:

v++ -l --config config.txt ...

Specifying Kernel DDR Interfaces

You should also specify the kernel DDR memory interface when specifying kernel placements.
Specifying the DDR interface ensures the automatic pipelining of kernel connections to a DDR
interface in a different SLR. This ensures there is no degradation in timing which can reduce the
maximum clock frequency.

In this example, using the kernel placements in the above figure:

• Kernel_A is connected to Memory Bank 0.

• Kernel_B is connected to Memory Bank 1.

• Kernel_C is connected to Memory Bank 2.

• Kernel_D is connected to Memory Bank 1.

The configuration file to perform these connections would be as follows, and passed through the
v++ --config command:

[connectivity]
nk=kernel:4:kernel_A.lernel_B.kernel_C.kernel_D

slr=kernel_A:SLR0
slr=kernel_B:SLR0
slr=kernel_C:SLR2
slr=kernel_D:SLR2

sp=kernel_A.arg1:DDR[0]
sp=kernel_B.arg1:DDR[1]
sp=kernel_C.arg1:DDR[2]
sp=kernel_D.arg1:DDR[1]

IMPORTANT! When using the connectivity.sp  option to assign kernel ports to memory banks, you
must map all interfaces/ports of the kernel. Refer to Mapping Kernel Ports to Global Memory for more
information.

Section IX: Migrating to a New Target Platform
Chapter 52: Modifying Kernel Placement

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  575Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=575


Chapter 53

Address Timing
Perform a system run and if it completes with no violations, then the migration is successful.

If timing has not been met you might need to specify some custom constraints to help meet
timing. Refer to UltraFast Design Methodology Guide for the Vivado Design Suite (UG949) for more
information on meeting timing.

Custom Constraints
Custom Tcl constraints for floorplanning, placement, and timing of the kernels will need to be
reviewed in the context of the new target platform (.xsa). For example, if a kernel needs to be
moved to a different SLR in the new target platform, the placement constraints for that kernel
will also need to be modified.

In general, timing is expected to be comparable between different target platforms that are based
on the 9P Virtex UltraScale device. Any custom Tcl constraints for timing closure will need to be
evaluated and might need to be modified for the new platform.

Custom constraints can be passed to the Vivado® tools using the [advanced] directives of the
v++ configuration file specified by the --config option. Refer to Managing FPGA Synthesis and
Implementation Results in the Vivado Tool more information.

Timing Closure Considerations
Design performance and timing closure can vary when moving across Vitis releases or target
platform(s), especially when one of the following conditions is true:

• Floorplan constraints were needed to close timing.

• Device or SLR resource utilization was higher than the typical guideline:

○ LUT utilization was higher than 70%

○ DSP, RAMB, and UltraRAM utilization was higher than 80%

○ FD utilization was higher than 50%

Section IX: Migrating to a New Target Platform
Chapter 53: Address Timing

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  576Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=576


• High effort compilation strategies were needed to close timing.

The utilization guidelines provide a threshold above which the compilation of the design can take
longer, or performance can be lower than initially estimated. For larger designs which usually
require using more than one SLR, specify the kernel/DDR association with the v++ --config
option, as described in Mapping Kernel Ports to Global Memory, while verifying that any
floorplan constraint ensures the following:

• The utilization of each SLR is below the recommended guidelines.

• The utilization is balanced across SLRs if one type of hardware resource needs to be higher
than the guideline.

For designs with overall high utilization, increasing the amount of pipelining in the kernels, at the
cost of higher latency, can greatly help timing closure and achieving higher performance.

For quickly reviewing all aspects listed above, use the fail-fast reports generated throughout the
Vitis application acceleration development flow using the -R option as described below (refer to 
Controlling Report Generation for more information):

• v++ –R 1

○ report_failfast is run at the end of each kernel synthesis step

○ report_failfast is run after opt_design on the entire design

○ opt_design DCP is saved

• v++ –R 2

○ Same reports as with -R 1, plus:

○ report_failfast is post-placement for each SLR

○ Additional reports and intermediate DCPs are generated

All reports and DCPs can be found in the implementation directory, including kernel synthesis
reports:

<runDir>/_x/link/vivado/prj/prj.runs/impl_1

For more information about timing closure and the fail-fast report, see the UltraFast Design
Methodology Timing Closure Quick Reference Guide (UG1292).

Section IX: Migrating to a New Target Platform
Chapter 53: Address Timing

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  577Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1292-ultrafast-timing-closure-quick-reference.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=577


Section X

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and
Design Hubs

Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

Section X: Additional Resources and Legal Notices

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  578Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=578


Please Read: Important Legal
Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Section X: Please Read: Important Legal Notices

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  579Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=579


Copyright

© Copyright 2019-2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight,
Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other
countries. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by
Khronos. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other
trademarks are the property of their respective owners.

Section X: Additional Resources and Legal Notices

UG1393 (v2020.1) August 20, 2020  www.xilinx.com
Vitis Application Acceleration Development  580Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1393&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2020.1&docPage=580

	Vitis Unified Software Platform Documentation
	Revision History
	Table of Contents
	Sec. I: Introduction to the Vitis Unified Software Platform
	Ch. 1: Vitis 2020.1 Software Platform Release Notes
	What's New
	Supported Platforms
	Changed Behavior
	Known Issues

	Ch. 2: Installation
	Installation Requirements
	Install Required RHEL/CentOS Packages
	OpenCL Installable Client Driver Loader
	Install Required Ubuntu Packages

	Vitis Software Platform Installation
	Install the Vitis Software Platform
	Installing Xilinx Runtime
	Installing Data Center Platforms
	Install Platforms on CentOS/RedHat
	Install Platforms on Ubuntu

	Setting Up the Environment to Run the Vitis Software Platform


	Ch. 3: Introduction to the Vitis Environment for Acceleration
	Accelerated Flow Application Development Using the Vitis Software Platform
	FPGA Acceleration

	Execution Model
	Build Process
	Host Program Build Process
	FPGA Binary Build Process
	Build Targets


	Tutorials and Examples

	Ch. 4: Methodology for Accelerating Applications with the Vitis Software Platform
	Introduction
	Acceleration: An Industrial Analogy
	Methodology Overview
	Recommendations

	Methodology for Architecting a Device Accelerated Application
	Step 1: Establish a Baseline Application Performance and Establish Goals
	Measure Running Time
	Measure Throughput
	Determine the Maximum Achievable Throughput
	Establish Overall Acceleration Goals

	Step 2: Identify Functions to Accelerate
	Identify Performance Bottlenecks
	Identify Acceleration Potential

	Step 3: Identify Device Parallelization Needs
	Estimate Hardware Throughput without Parallelization
	Determine How Much Parallelism is Needed
	Determine How Many Samples the Datapath Should be Processing in Parallel
	Determine How Many Kernels Can and Should be Instantiated in the Device

	Step 4: Identify Software Application Parallelization Needs
	Minimize CPU Idle Time While the Device Kernels are Running
	Keep the Device Kernels Utilized
	Optimize Data Transfers to and from the Device
	Conceptualize the Desired Application Timeline

	Step 5: Refine Architectural Details
	Finalize Kernel Boundaries
	Decide Kernel Placement and Connectivity


	Methodology for Developing C/C++ Kernels
	About the High-Level Synthesis Compiler
	Verification Considerations
	Step 1: Partition the Code into a Load-Compute-Store Pattern
	Create a Top-Level Function with the Desired Interface
	Code the Load and Store Functions
	Match Port Width to Datapath Width
	Use Burst Transfers
	Minimize the Number of Data Transfers from Global Memory

	Code the Compute Functions
	Connect the Load, Compute, and Store Functions

	Step 2: Partition the Compute Blocks into Smaller Functions
	Decompose to Identify Throughput Goals
	Aim for Functions with a Single Loop Nest
	Connect Compute Functions Using the Dataflow ‘Canonical Form’

	Step 3: Identify Loops Requiring Optimization
	Step 4: Improve Loop Latencies
	Apply Loop Unrolling
	Apply Array Partitioning

	Step 5: Improve Loop Throughput
	Eliminate I/O Contentions
	Eliminate Loop-Carried Dependencies
	Advanced Techniques




	Sec. II: Developing Applications
	Ch. 5: Programming Model
	Device Topology
	Kernel Properties
	Kernel Execution Modes
	Kernel Interfaces
	Clock and Reset Requirements


	Ch. 6: Host Application
	Setting Up the OpenCL Environment
	Platform
	Devices
	Sub-Devices

	Context
	Command Queues
	Program

	Executing Commands in the FPGA
	Setting Up Kernels
	Setting Kernel Arguments

	Buffer Transfer to/from the FPGA
	Using clEnqueueMigrateMemObjects
	Allocating Page-Aligned Host Memory
	Using clEnqueueMapBuffer
	Buffer Allocation on the Device
	Sub-Buffers
	Reading a Specific Portion from the Device Buffer
	Device Buffer Shared by Multiple Memory Ports or Multiple Kernels


	Kernel Execution
	Task Parallelism Using Different Kernels
	Spatial Data Parallelism: Increase Number of Compute Units
	Temporal Data Parallelism: Host-to-Kernel Dataflow
	Enabling Host-to-Kernel Dataflow

	Symmetrical and Asymmetrical Compute Units
	Kernel Handle and Compute Units
	Using Compute Unit Name to Get Handle of All Asymmetrical Compute Units


	Event Synchronization

	Post-Processing and FPGA Cleanup
	Summary

	Ch. 7: C/C++ Kernels
	Data Types
	Arbitrary Precision Integer Types
	Arbitrary Precision Fixed-Point Data Types

	Interfaces
	Memory Mapped Interfaces
	Kernel Interfaces
	Memory Interface Width Considerations
	Reading and Writing by Burst

	Scalar Inputs
	Streaming Interfaces

	Process Execution Modes
	Loops
	Loop Pipelining
	Loop Unrolling
	Loop Dependencies
	Nested Loops
	Sequential Loops

	Dataflow Optimization
	Dataflow Coding Example
	Canonical Forms of Dataflow Optimization
	Troubleshooting Dataflow

	Array Configuration
	Function Inlining
	Summary

	Ch. 8: RTL Kernels
	Requirements of an RTL Kernel
	Kernel Interface Requirements
	Kernel Software Requirements
	Interrupt

	RTL Kernel Development Flow
	Package the RTL Code as a Vivado IP
	Creating the .xo File from the RTL Kernel
	Creating the Kernel Description XML File

	RTL Kernel Wizard
	Launch the RTL Kernel Wizard
	Using the RTL Kernel Wizard
	General Settings
	Scalars
	Global Memory
	Streaming Interfaces
	Summary

	Using the RTL Kernel Project in Vivado IDE
	RTL Type Kernel Project
	Block Design Type Kernel Project
	Simulation Test Bench
	Out-of-Context Synthesis
	Software Model and Host Code Example
	Generate RTL Kernel
	Modifying an Existing RTL Kernel Generated from the Wizard


	Design Recommendations for RTL Kernels
	Memory Performance Optimizations for AXI4 Interface
	Managing Clocks in an RTL Kernel
	Quality of Results Considerations
	Debug and Verification Considerations


	Ch. 9: Streaming Data Transfers
	Streaming Data Between the Host and Kernel (H2K)
	Host Coding Guidelines
	Kernel Coding Guidelines

	Streaming Data Transfers Between Kernels (K2K)
	Host Coding Guidelines
	Streaming Kernel Coding Guidelines

	Free-Running Kernel
	Host Coding for Free-Running Kernels
	Coding Guidelines for Free-Running Kernels


	Ch. 10: OpenCL Kernels
	Ch. 11: Best Practices for Acceleration with Vitis

	Sec. III: Building and Running the Application
	Ch. 12: Setting up the Vitis Environment
	Ch. 13: Build Targets
	Software Emulation
	Hardware Emulation
	System Hardware Target

	Ch. 14: Building the Host Program
	Compiling and Linking for x86
	Compiling and Linking for Arm

	Ch. 15: Building the Device Binary
	Compiling Kernels with Vitis Compiler
	Compiling Kernels with Vitis HLS
	Creating Kernels in Vitis HLS
	Vitis HLS Script for Creating Kernels


	Packaging RTL Kernels with package_xo
	Linking the Kernels
	Creating Multiple Instances of a Kernel
	Mapping Kernel Ports to Global Memory
	Specify Streaming Connections between Compute Units
	Assigning Compute Units to SLRs
	Managing FPGA Synthesis and Implementation Results in the Vivado Tool

	Controlling Report Generation

	Ch. 16: Packaging the System
	Packaging for Data Center Platforms
	Packaging for Embedded Platforms

	Ch. 17: Directory Structure
	Output Directories from the v++ Command
	Output Directories from the Vitis IDE

	Ch. 18: Running an Application

	Sec. IV: Profiling, Optimizing, and Debugging the Application
	Ch. 19: Profiling the Application
	Enabling Profiling in Your Application
	Baselining Functionalities and Performance
	Guidance
	Opening the Guidance Report
	Interpreting Guidance Data

	System Estimate Report
	Opening the System Estimate Report
	Interpreting the System Estimate Report
	Design and Target Device Summary
	Kernel Summary
	Timing Information
	Latency Information
	Area Information


	HLS Report
	Generating and Opening the HLS Report
	Interpreting the HLS Report

	Profile Summary Report
	Generating and Opening the Profile Summary Report
	Interpreting the Profile Summary

	Application Timeline
	Generating and Opening the Application Timeline
	Interpreting the Appication Timeline

	Low Overhead Profiling
	How to Enable Low Overhead Profiling

	Waveform View and Live Waveform Viewer
	Generating and Opening the Waveform Reports
	Interpreting Data in the Waveform Views


	Ch. 20: Optimizing the Performance
	Host Optimization
	Reducing Overhead of Kernel Enqueing
	Optimizing Data Movement
	Overlapping Data Transfers with Kernel Computation
	Buffer Memory Segmentation

	Compute Unit Scheduling
	Multiple In-Order Command Queues
	Single Out-of-Order Command Queue


	Kernel Optimization
	Optimizing Kernel Computation
	Interface Attributes (Detailed Kernel Trace)
	Using Burst Data Transfers
	Using Full AXI Data Width
	Setting Data Width Using OpenCL Attributes

	Reducing Kernel to Kernel Communication Latency with OpenCL Pipes

	Optimizing Computational Parallelism
	Coding Data Parallelism
	Loop Parallelism
	Unrolling Loops
	Pipelining Loops

	Task Parallelism

	Optimizing Compute Units
	Optimizing Memory Architecture
	Kernel SLR and DDR Memory Assignments
	Guidelines for Kernels that Access Multiple Memory Banks

	Exploring Kernel Optimizations Using Vitis HLS

	Topological Optimization
	Multiple Compute Units
	Using Multiple DDR Banks
	Assigning DDR Bank in Host Code
	Assigning Global Memory for Kernel Code
	Creating Multiple AXI Interfaces
	Assigning AXI Interfaces to DDR Banks
	Assigning AXI Interfaces to PLRAM
	Assigning Kernels to SLR Regions




	Ch. 21: Debugging Applications and Kernels
	Debugging Flows
	Debugging in Software Emulation
	GDB-Based Debugging
	Xilinx Runtime Library GDB Extensions
	xprint Commands
	xstatus Commands

	GDB Kernel-Based Debugging

	Command Line Debug Flow
	Debugging OpenCL Kernels
	Launching Host and Kernel Debug

	Using printf() or cout to Debug Kernels
	C/C++ Kernel
	OpenCL Kernel


	Debugging in Hardware Emulation
	GDB-Based Debugging in Hardware Emulation
	Waveform-Based Kernel Debugging
	Enable Waveform Debugging with the Vitis Compiler Command
	Run the Waveform-Based Kernel Debugging Flow


	Debugging During Hardware Execution
	Enabling Kernels for Debugging with Chipscope
	System ILA
	Adding Debug IP to RTL Kernels

	Enabling ILA Triggers for Hardware Debug
	Adding ILA Triggers Before Starting Kernels
	Pausing the Host Application Using GDB

	Debugging with ChipScope
	Checking the FPGA Board for Hardware Debug Support
	Running XVC and HW Servers
	Automated Setup for Hardware Debug
	Manual Setup for Hardware Debug
	Starting Debug Servers on an Amazon F1 Instance

	Debugging Designs Using Vivado Hardware Manager
	JTAG Fallback for Private Debug Network
	JTAG Fallback Steps


	Utilities for Hardware Debugging
	Using the Linux dmesg Utility
	Using the Xilinx xbutil Utility

	Techniques for Debugging Application Hangs
	AXI Firewall Trips
	Kernel Hangs Due to AXI Violations
	Host Application Hangs When Accessing Memory
	Typical Errors Leading to Application Hangs
	Defensive Programming


	Debugging on Embedded Processor Platforms
	Emulation Debug for Embedded Processors
	Hardware Debug for Embedded Processors

	Example of Command Line Debugging


	Sec. V: Vitis Environment Reference Materials
	Ch. 22: Vitis Compiler Command
	Vitis Compiler General Options
	--advanced Options
	--clock Options
	--connectivity Options
	--hls Options
	--linkhook Options
	--package Options
	--vivado Options
	Vitis Compiler Configuration File
	Using the Message Rule File

	Ch. 23: emconfigutil Utility
	Ch. 24: kernelinfo Utility
	Kernel Definition
	Arguments
	Ports

	Ch. 25: launch_emulator Utility
	Ch. 26: manage_ipcache Utility
	Ch. 27: package_xo Command
	Ch. 28: platforminfo Utility
	Basic Platform Information
	Hardware Platform Information
	Interface Information
	Clock Information
	Valid SLRs
	Resource Availability
	Memory Information
	Feature ROM Information
	Software Platform Information
	Platforminfo for xilinx_zcu104_base_202010_1

	Ch. 29: xbutil Utility
	clock
	dmatest
	dump
	m2mtest
	mem --read
	mem --write
	p2p
	program
	query
	reset
	scan (xbutil)
	status
	top
	validate
	version

	Ch. 30: xbmgmt Utility
	flash
	scan (xbmgmt)
	version

	Ch. 31: xclbinutil Utility
	xclbin Information
	Hardware Platform Information
	Clocks
	Memory Configuration
	Kernel Information
	Tool Generation Information

	Ch. 32: xrt.ini File
	Ch. 33: HLS Pragmas
	Ch. 34: OpenCL Attributes
	always_inline
	opencl_unroll_hint
	reqd_work_group_size
	vec_type_hint
	work_group_size_hint
	xcl_array_partition
	xcl_array_reshape
	xcl_dataflow
	xcl_latency
	xcl_loop_tripcount
	xcl_max_work_group_size
	xcl_pipeline_loop
	xcl_pipeline_workitems
	xcl_reqd_pipe_depth
	xcl_zero_global_work_offset


	Sec. VI: Using the Vitis Analyzer
	Ch. 35: Working with Reports
	Ch. 36: Vitis Analyzer GUI and Window Manager
	Diff Two Text Files
	Cross-Probing Between Reports

	Ch. 37: Platform and System Diagrams
	Ch. 38: Creating an Archive File
	Ch. 39: Configuring the Vitis Analyzer

	Sec. VII: Using the Vitis IDE
	Ch. 40: Vitis Command Options
	Ch. 41: Creating a Vitis IDE Project
	Launch a Vitis IDE Workspace
	Create an Application Project
	Managing Platforms and Repositories

	Understanding the Vitis IDE
	Adding Sources
	Add Source Files
	Create and Edit New Source Files

	Working in the Project Editor View
	Working in the Assistant View

	Ch. 42: Building the System
	Vitis IDE Guidance View
	Working with Vivado Tools from the Vitis IDE

	Ch. 43: Vitis IDE Debug Flow
	Using the Standalone Debug Flow
	vitis -debug Command Line

	Ch. 44: Configuring the Vitis IDE
	Vitis Project Settings
	Vitis Build Configuration Settings
	Vitis Run Configuration Settings
	Vitis Binary Container Settings
	Vitis Hardware Function Settings
	Vitis Toolchain Settings
	Vitis Kernel Compiler and Linker Options
	emconfigutil Settings
	G++ Host Compiler and Linker Settings


	Ch. 45: Project Export and Import
	Export a Vitis Project
	Import a Vitis Project

	Ch. 46: Getting Started with Examples
	Installing Examples and Libraries
	Using Local Copies


	Sec. VIII: Using Vitis Embedded Processor Platforms
	Ch. 47: Vitis Embedded Platforms
	Introduction
	Platform Types
	Platform Naming Convention
	Embedded Platform Components and Architecture
	Installing Embedded Platforms

	Ch. 48: Using Vitis Embedded Platforms
	Packaging Images
	Packaging Images with Ext4 rootfs in the Vitis IDE
	Packaging Images with initramfs rootfs in the Vitis IDE

	Writing Images to the SD Card
	Configuring the PL Kernel in DFX Platforms and Non-DFX Platforms
	Running an Acceleration Application on the Board
	Software Package Management in PetaLinux rootfs

	Ch. 49: Creating Embedded Platforms in Vitis
	Platform Basics
	Platform Creation Requirements
	Creating an Embedded Platform
	Adding Hardware Interfaces
	Updating Software Components
	Packaging a Vitis Acceleration Platform
	Testing Your Platform
	Special Considerations for Embedded Platform Creation



	Sec. IX: Migrating to a New Target Platform
	Ch. 50: Design Migration
	Understanding an FPGA Architecture
	Understanding Target Platforms

	Ch. 51: Migrating Releases
	Host Code Migration
	Release Migration

	Ch. 52: Modifying Kernel Placement
	Implications of a New Hardware Platform
	Determining Where to Place the Kernels
	Assigning Kernels to SLRs

	Ch. 53: Address Timing
	Custom Constraints
	Timing Closure Considerations


	Sec. X: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	Please Read: Important Legal Notices





