
Messages for this week

• Projects
• Project plan presentations are scheduled for 3 – 5pm today and tomorrow
• Project plans to be included in the COMP4601 Wiki by the weekend

• Seminars
• Meet with group, read and discuss papers suggested for your topic
• Today’s lecture is the last; seminars start in Week 7

• Labs
• Handin on Ch. 4 lab due next Monday
• Handin on Ch. 5 lab should be released by Friday and is due Monday, Week 8



Ch 5. Fast Fourier 
Transform



From last week…Discrete Fourier Transform

• DFT is a fundamental signal processing technique
• Transforms a discrete signal (fixed number of samples) in the time domain to a discrete 

signal in the frequency domain i.e. as a sum of sinusoids
• This allows for advanced filtering and modulation techniques as well as fast large-integer and 

polynomial mutiplication
• At its core, DFT performs a matrix-vector multiplication, where the matrix is a fixed set of 

coefficients

• I assume you have read the mathematical introduction to DFTs at the start of Ch. 4 and 
the intro to FFTs at the start of Ch. 5
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DFT

• The DFT converts a finite number of equally spaced samples into a finite number of 
complex sinusoids

• Given N complex samples of signal g[] in the time domain, N complex signal values, G[], 
are computed in the frequency domain using the expression G	=	S	! g, 

where 𝑆 =

1 1 1 ⋯ 1
1 𝑠 𝑠! ⋯ 𝑠"#$
1
⋮
1

𝑠!
⋮

𝑠"#$

𝑠%
⋮

𝑠!("#$)

⋯
⋱
⋯

𝑠!("#$)
⋮

𝑠("#$)("#$)

and 𝑠 = 𝑒
!"#$
%

Hence, 𝐺 𝑘 = ∑()*"#$𝑔 𝑛 𝑠+( for 𝑘 = 0,⋯ ,𝑁 − 1
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A visualization of DFT coefficients (8 point DFT)
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• Note the abundance of symmetry in matrix S
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Fast Fourier Transform

• The DFT computation using matrix-vector multiplication requires O(n2) multiply and add 
operations for an input with n samples

• This complexity can be reduced by exploiting the redundancy in the structure of the 
coefficient matrix

• The FFT uses divide and conquer on the symmetry of the S matrix to reduce the 
complexity to O(nlogn) 

• We’ll consider the FFT algorithm developed by Cooley & Tukey and published in 1965

• In the following, we’ll take a quick look at the background before studying the algorithm 
and its optimization
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The 2-point DFT

• Let the so-called “twiddle factor”   

W 𝑘𝑛
𝑁 = e !"#$%&%'

(

• Then we can rewrite the 2-point DFT as

𝐺[0]
𝐺[1] = 𝑊#

)) 𝑊#
)*

𝑊#
*) 𝑊#

** - 𝑔 0𝑔 1

• which expands to

𝐺 0 = 𝑔[0] - 𝑒
!"#$%&%&

# + 𝑔 1 - 𝑒
!"#$%&%'

#

= 𝑔 0 + 𝑔 1

𝐺 1 = 𝑔[0] - 𝑒
!"#$%*%)

# + 𝑔 1 - 𝑒
!"#$%*%*

#

= 𝑔 0 − 𝑔 1

and can be represented as a dataflow    
graph

or as a butterfly operation
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The 4-point DFT

• Similarly, we can write

𝐺[0]
𝐺[1]
𝐺[2]
𝐺[3]

=

𝑊%** 𝑊%*$ 𝑊%*! 𝑊%*,

𝑊%$* 𝑊%$$ 𝑊%$! 𝑊%$,

𝑊%!*

𝑊%,*
𝑊%!$

𝑊%,$
𝑊%!!

𝑊%,!
𝑊%!,
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𝑔[0]
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as

𝐺 0 = 𝑔 0 + 𝑔 2 + 𝑒
#-!.*
% 𝑔 1 + 𝑔 3

𝐺 1 = 𝑔 0 − 𝑔 2 + 𝑒
#-!.$
% 𝑔 1 − 𝑔 3

𝐺 2 = 𝑔 0 + 𝑔 2 − 𝑒
#-!.*
% 𝑔 1 + 𝑔 3

𝐺 3 = 𝑔 0 − 𝑔 2 − 𝑒
#-!.$
% 𝑔 1 − 𝑔 3

• Which leads to the following recursive 
diagrammatic representation:
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Deriving the N-point DFT structure

We can rearrange the general expression

𝐺 𝑘 = ∑()*"#$𝑔[𝑛] ! 𝑒
!"#$&'

% for 𝑘 = 0, . . 𝑁 − 1
to obtain

𝐺 𝑘 = ∑()*
"/!#$𝑔[2𝑛] ! 𝑒

!"#$&'
%/#

+ 𝑒
!"#$&
% ! ∑()*

"/!#$𝑔[2𝑛 + 1] ! 𝑒
!"#$&'
%/#

and write it as

𝐺 𝑘 = 𝐴+ +𝑊"
+𝐵+

For the N/2 higher frequencies, the general 
expression can be rearranged as

𝐺 𝑘 + 𝑁/2 = ∑()*
"/!#$𝑔[2𝑛] ! 𝑒

!"#$&'
%/#

- 𝑒
!"#$&
% ! ∑()*

"/!#$𝑔[2𝑛 + 1] ! 𝑒
!"#$&'
%/#

which can be written as 
𝐺 𝑘 + 𝑁/2 = 𝐴+ −𝑊"

+𝐵+
A general recursive structure for an N-point 
DFT is thus obtained:
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An 8-point FFT
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Index Binary Reversed
Binary

Reversed
Index

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

As another example, how many stages
does a 64-point FFT have?

What index does g[37] in the 64-point FFT 
get mapped to? (Hint: g[37]=g[100101])

How many butterfly ops are there per stage
in a 64-point FFT?

Obtained by recursively dividing
the indices into smaller lists of
“even” and “odd” entries i.e.

0      0      0
1      2      4
2      4      2
3      6      6
4      1      1
5      3      5
6      5      3
7      7      7

→ →
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The Cooley-Tukey FFT algorithm

• We have been looking at the algorithm over the last few slides; next, we’ll look at code 
that is typical for a software implementation

• When performed sequentially, the O(nlogn) operations in the FFT require O(nlogn) time 
steps. 

• But since each butterfly op is independent of the other butterfly ops in the same stage, in 
theory, all n/2 ops per stage could be performed in parallel with a task interval of 1

• In practice, this is rarely done, except for small sample sizes – consider that a 1024-point 
complex FFT using floats running at 250MHz would require 1024*4*2*250*10^6 = 2TB/s data 
throughput & considerable dynamic power! We have to consider throughput requirements and 
resource availability…

• How many butterfly ops need to be performed per sec assuming a 1024-point FFT at 250MHz 
with a task interval of 1?
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SW implementation of FFT

void fft(DTYPE X_R[SIZE], DTYPE X_I[SIZE]) {
DTYPE temp_R; // temporary storage complex variable
DTYPE temp_I; // temporary storage complex variable
int i, j, k;  // loop indexes
int i_lower;  // Index of lower point in butterfly
int step, stage, DFTpts;
int numBF;    // Butterfly Width
int N2 = SIZE2; // N2=N/1

bit_reverse(X_R, X_I);

step = N2;
DTYPE a, e, c, s;

stage_loop: // Do M = log2(SIZE) stages of butterflies

for (stage = 1; stage <= M; stage++) { 
DFTpts = 1 << stage; // DFT = 2^stage = points in

// sub DFT
numBF = DFTpts / 2;  // Butterfly WIDTHS in sub-DFT
k = 0;
e = -6.283185307178 / DFTpts;
a = 0.0;

butterfly_loop: // Perform butterflies for j-th stage
// Perf b’flies for one sub-DFT at this stage

for (j = 0; j < numBF; j++) {
c = cos(a);
s = sin(a);
a = a + e;

dft_loop: // Compute butterflies that use same W**k
// Comp b’flies for all sub-DFTs at this stage

for (i = j; i < SIZE; i += DFTpts) {
i_lower = i + numBF; // index of lower point

// in butterfly (closer
// to bottom in diagram)

temp_R = X_R[i_lower] * c - X_I[i_lower] * s;
temp_I = X_I[i_lower] * c + X_R[i_lower] * s;
X_R[i_lower] = X_R[i] - temp_R;
X_I[i_lower] = X_I[i] - temp_I;
X_R[i] = X_R[i] + temp_R;
X_I[i] = X_I[i] + temp_I;

}
k += step; // declarations & statements in red 

// are redundant
}
step = step / 2;

}
}
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Nested loop in FFT SW
stage_loop: // Do M = log2(SIZE) stages of butterflies

for (stage = 1; stage <= M; stage++) { 
DFTpts = 1 << stage; // DFT = 2^stage = points in

// sub DFT
numBF = DFTpts / 2;  // Butterfly WIDTHS in sub-DFT
e = -6.283185307178 / DFTpts;
a = 0.0;

butterfly_loop: // Perform butterflies for j-th stage
// Perf b’flies for one sub-DFT at this stage

for (j = 0; j < numBF; j++) {
c = cos(a);
s = sin(a);
a = a + e;

dft_loop: // Compute butterflies that use same W**k
// Comp b’flies for all sub-DFTs at this stage

for (i = j; i < SIZE; i += DFTpts) {
i_lower = i + numBF; // index of lower point

// in butterfly (closer
// to bottom in diagram)

temp_R = X_R[i_lower] * c - X_I[i_lower] * s;
temp_I = X_I[i_lower] * c + X_R[i_lower] * s;
X_R[i_lower] = X_R[i] - temp_R;
X_I[i_lower] = X_I[i] - temp_I;
X_R[i] = X_R[i] + temp_R;
X_I[i] = X_I[i] + temp_I;

}
}
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SW implementation of bit_reverse

#include "math.h"
#include "fft.h"

// reverse the bits of input integer
unsigned int reverse_bits(unsigned int input) {

int i, rev = 0;
for (i = 0; i < M; i++) {

rev = (rev << 1) | (input & 1);
input = input >> 1;

}
return rev;

}

// swap each input vector entry with the entry having 
// the reversed entry index
void bit_reverse(DTYPE X_R[SIZE], DTYPE X_I[SIZE]) {

unsigned int reversed;
unsigned int i;
DTYPE temp;

for (i = 0; i < SIZE; i++) {
reversed = reverse_bits(i); // Find the bit-

// reversed index
if (i <= reversed) {

// Swap the real values
temp = X_R[i];
X_R[i] = X_R[reversed];
X_R[reversed] = temp;

// Swap the imaginary values
temp = X_I[i];
X_I[i] = X_I[reversed];
X_I[reversed] = temp;

}
}

}
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Task pipelining the FFT algorithm

• The N-point FFT algorithm can be divided into log2(N) + 1 stages 
• The first stage swaps the elements of the input array to it’s bit-reversed index postn
• Followed by log2(N) stages of butterfly ops
• Each stage is described as an independent task with all stages being interlinked in a 

pipeline

• These stages can be executing concurrently on different data sets
• Such a hardware optimization, which is known as task pipelining, is 

relevant to many applications
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Restructured code to enable task pipelining
void fft_stage(int stage, DTYPE X_R[SIZE], DTYPE X_I[SIZE],

DTYPE Out_R[SIZE], DTYPE Out_I[SIZE]) 
{

int DFTpts = 1 << stage; // points in sub-DFT
int numBF = DFTpts / 2;  // Butterfly WIDTHS in sub-DFT
DTYPE e = -6.283185307178 / DFTpts;
DTYPE a = 0.0;

// Perform butterflies for j-th stage
butterfly_loop:

for (int j = 0; j < numBF; j++) {
DTYPE c = cos(a);
DTYPE s = sin(a);
a = a + e;

// Compute butterflies that use same W**k
dft_loop:

for (int i = j; i < SIZE; i += DFTpts) {
int i_lower = i + numBF; // idx of lower point in bfly
DTYPE temp_R = X_R[i_lower] * c - X_I[i_lower] * s;
DTYPE temp_I = X_I[i_lower] * c + X_R[i_lower] * s;
Out_R[i_lower] = X_R[i] - temp_R;
Out_I[i_lower] = X_I[i] - temp_I;
Out_R[i] = X_R[i] + temp_R;
Out_I[i] = X_I[i] + temp_I;

}
}

}

void fft_streaming(DTYPE X_R[SIZE], DTYPE X_I[SIZE], 
DTYPE OUT_R[SIZE], DTYPE OUT_I[SIZE])

{
#pragma HLS dataflow
DTYPE Stage1_R[SIZE], Stage1_I[SIZE],

Stage2_R[SIZE], Stage2_I[SIZE],
Stage3_R[SIZE], Stage3_I[SIZE];

bit_reverse(X_R, X_I, Stage1_R, Stage1_I);
fft_stage(1, Stage1_R, Stage1_I, Stage2_R, Stage2_I);
fft_stage(2, Stage2_R, Stage2_I, Stage3_R, Stage3_I);
fft_stage(3, Stage3_R, Stage3_I, OUT_R, OUT_I);

}
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Executing the task pipeline

• Rather than waiting for the first task (8-
point data sample) to complete all four 
function calls, the second task 
commences after the first task has only 
finished the first function

• The first task continues to execute each 
stage in the pipeline in order, followed by 
the remaining tasks in order

• Once the pipeline is full all four 
subfunctions are executing concurrently, 
but each operates on different input data

• For this to work, each call to fft_stage
must be implemented with independent 
hardware AND sufficient storage is 
needed to contain the intermediate 
computations of each stage 16

bit reverse fft stage 1 fft stage 2 fft stage 3

Stage1 R[]

Stage1 I[]

Stage2 R[]

Stage2 I[]

X R[]

X I[]

OUT R[]

OUT I[]

Stage3 R[]

Stage3 I[]

input  
bit reverse

fft stage 1

fft stage 2

fft stage 3

output



Applying dataflow at the loop level

• The dataflow directive can construct 
separate pipeline stages, or processes, 
from both functions and loops

• For example, the original code could 
have been pipelined by unrolling the 
stage_loop

• This approach has the benefit of preserving the 
structure of the original code and leaving it 
parameterized so that it can accept differently 
sized FFTs

void fft_streaming(DTYPE X_R[SIZE], DTYPE X_I[SIZE],
DTYPE OUT_R[SIZE], DTYPE OUT_I[SIZE])

{
#pragma HLS dataflow
DTYPE Stage_R[M][SIZE], Stage_I[M][SIZE];
#pragma HLS array_partition variable=Stage_R 

dim=1 complete
#pragma HLS array_partition variable=Stage_I 

dim=1 complete

bit_reverse(X_R, X_I, Stage_R[0], Stage_I[0]);

stage_loop: // Do M-1 stages of butterflies
for (int stage = 1; stage < M; stage++) { 

#pragma HLS unroll
fft_stage(stage, Stage_R[stage-1], 

Stage_I[stage-1], 
Stage_R[stage], 
Stage_I[stage]);

}

fft_stage(M, Stage_R[M-1], Stage_I[M-1], 
OUT_R, OUT_I);

}
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dataflow vs pipeline

• The dataflow directive and the pipeline directive both generate circuits capable of 
pipelined execution. The key difference is in the granularity of the pipelines.

• The pipeline directive constructs an architecture that is efficiently pipelined at the 
cycle level and is characterized by the II of the pipeline. Operators are statically 
scheduled. 

• The dataflow directive constructs an architecture that is efficiently pipelined for
operations that take a (possibly unknown) number of clock cycles, such as the
behavior of a loop operating on a block of data. These coarse-grained operations are 
not statically scheduled – their behavior is controlled dynamically by the handshake of 
data through the pipeline. 

• In the case of the FFT, it makes sense to use the dataflow directive at the top level to 
form a coarse-grained pipeline, combined with the pipeline directive within each loop 
to form fine-grained pipelines of the operations on each individual data element.
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Optimizing dataflow processes

• Using the dataflow directive to full effect requires that the behavior of each 
individual process in the pipeline be optimized. 

• Each process in the pipeline can be optimized using the techniques we have seen
previously, such as code restructuring, pipelining, and unrolling. 

• Start with small functions, since it is easier to comprehend what is going on and to determine the best 
optimization strategy.

• In general, it is important to optimize the individual tasks while considering overall top 
level performance goals. 

• After optimizing individual functions, move up the hierarchy considering higher level functions given the 
particular implementations chosen for the lower level functions.

• For dataflow designs, it should be understood that the interval achieved for the overall 
pipeline can never be smaller than the largest interval of any individual process. Hence 
it’s desirable to minimize interval differences across the pipeline rather than to 
aggressively optimize each function

• The resource usage of some processes may thus benefit from being slowed down.

19



Task pipeline buffers

• The dataflow directive must implement memories to pass data between processes
• When Vivado HLS can determine that processes access the data sequentially, it 

implements FIFOs between the processes, which can considerably conserve resources
• When the accesses are random, or if the tool can’t determine that the access pattern is 

sequential, it implements ping-pong buffers instead so that the producer can be writing to 
one buffer while the consumer is reading from the other
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Concluding remarks

• “The overall goal is to create the most optimal design, which is a function of your 
application needs. This may be to create the smallest implementation. Or the goal 
could be creating something that can perform the highest throughput regardless of
the size of the FPGA or the power/energy constraints. Or the latency of delivering the 
results may matter if the application has real-time constraints. All of the optimizations
change these factors in different ways.”

• “In general, there is no one algorithm on how to optimize your design. It is a complex 
function of the application, design constraints, [ target  technology & too ls ]  and
the inherent abilities of the designer… it is important that the designer have a deep 
understanding of the application, the design constraints, and the abilities of the
synthesis tool.”

• “The designer could translate C/MATLAB/Java/Python code into Vivado HLS and get 
a working implementation. And that same designer could somewhat blindly apply 
directives to achieve better results. But that designer is not going to get anywhere 
close to optimal results without a deep understanding of the algorithm.”
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