
Messages of the week

• Projects
• Time to meet and discuss project plans with your team
• Let me know ASAP if your team has a preference for which lab session next week to

present during – I will allocate date if no preference received by Monday

• Seminars
• Meet with group, read and discuss papers suggested for your topic

• Labs
• Discussion

Ch 4. Discrete Fourier
Transform

Discrete Fourier Transform

• DFT is a fundamental signal processing technique
• Transforms a discrete (fixed number of samples) signal in the time domain to a discrete

signal in the frequency domain i.e. as a sum of sinusoids
• This allows for advanced filtering and modulation techniques as well as fast large-integer and

polynomial mutiplication
• At its core, DFT performs a matrix-vector multiplication, where the matrix is a fixed set of

coefficients

• I assume you have read the mathematical introduction to DFTs at the start of Ch. 4 as my
review will be very brief

2

DFT

• The DFT converts a finite number of equally spaced samples in time into a finite number
of complex sinusoids

• Given N real-valued samples of signal g[] in the time domain, N/2+1 complex signal
values, G[], are computed in the frequency domain using the expression G	=	S	! g,

where 𝑆 =

1 1 1 ⋯ 1
1 𝑠 𝑠! ⋯ 𝑠"#$
1
⋮
1

𝑠!
⋮

𝑠"#$

𝑠%
⋮

𝑠!("#$)

⋯
⋱
⋯

𝑠!("#$)
⋮

𝑠("#$)("#$)

and 𝑠 = 𝑒
!"#$
%

Hence, 𝐺 𝑘 = ∑()*"#$𝑔 𝑛 𝑠+(for 𝑘 = 0,⋯ ,𝑁 − 1

3

A visualization of DFT coefficients (8 point DFT)
𝐺[0]
𝐺[1]
𝐺[2]
𝐺[3]
𝐺[4]
𝐺[5]
𝐺[6]
𝐺[7]

=

→ → → → → → → →
→ ↘ ↓ ↙ ← ↖ ↑ ↗
→
→
→
→
→
→

↓
↙
←
↖
↑
↗

←
↑
→
↓
←
↑

↑
↘
←
↗
↓
↖

→
←
→
←
→
←

↓
↗
←
↘
↑
↙

←
↓
→
↑
←
↓

↑
↖
←
↙
↓
↘

𝑔[0]
𝑔[1]
𝑔 2
𝑔[3]
𝑔 4
𝑔[5]
𝑔[6]
𝑔[7]

• Note the abundance of symmetry in matrix S

4

DFT as matrix-vector multiplication

• DFT can be computed as a matrix-vector
multiplication

• Code to the right provides a good
baseline

• The algorithm comprises a nested loop
that, while simple, offers many design
choices

• Memory organization is one important
factor – use wires, registers, RAM, FIFO
to store variables? Each comes with its
own area/performance tradeoff.

• Amount of parallelism to exploit (when its
available) is another, with obvious
area/performance tradeoffs

#define SIZE 8
typedef int BaseType;

void matrix_vector(BaseType M[SIZE][SIZE],
BaseType V_In[SIZE],
BaseType V_Out[SIZE]) {

int i, j;
data_loop:
for (i = 0; i < SIZE; i++) {

BaseType sum = 0;
dot_product_loop:
for (j = 0; j < SIZE; j++) {

sum += V_In[j] * M[i][j];
}
V_Out[i] = sum;

}
}

5

Sequential architecture

When the MV_mult code is compiled without
HLS directives, a sequential architecture
with one multiplier and one adder is
synthesized
• Logic to access the V_in, V_out and M

arrays, stored in BRAMs, is produced
• The result is a design that does not use

much area, but has a high task latency
and task interval

6

M

V_In * +

V_Out

V_in[i]

V_out[i]

Latency = 4 * SIZE * SIZE

Manually unrolling the inner, dot_product_loop

#define SIZE 8
typedef int BaseType;

void matrix_vector(BaseType M[SIZE][SIZE],
BaseType V_In[SIZE], BaseType V_Out[SIZE])

{

BaseType i, j;
data_loop:
for (i = 0; i < SIZE; i++) {

V_Out[i] = V_In[0] * M[i][0] +
V_In[1] * M[i][1] +
V_In[2] * M[i][2] +
V_In[3] * M[i][3] +
V_In[4] * M[i][4] +
V_In[5] * M[i][5] +
V_In[6] * M[i][6] +
V_In[7] * M[i][7];

}
}

7

• There is substantial opportunity to exploit
parallelism – starting with the inner loop,
which can be rewritten to eliminate the
data dependency (in this case)

• It should now be clear that there is
significant parallelism in the loop body –
each multiplication could be performed in
parallel and the additions could be done
using an adder tree

Manually unrolling the inner, dot_product_loop

8

• There is substantial opportunity to exploit
parallelism – starting with the inner loop,
which can be rewritten to eliminate the
data dependency (in this case)

• It should now be clear that there is
significant parallelism in the loop body –
each multiplication could be performed in
parallel and the additions could be done
using an adder tree

• A dataflow graph for this computation is
depicted on the right

V In[0]
M[i][0]

V In[1]
M[i][1]

V In[2]
M[i][2]

V In[3]
M[i][3]

V In[4]
M[i][4]

V In[5]
M[i][5]

V In[6]
M[i][6]

V In[7]
M[i][7]

V Out[i]

Manually unrolling the inner, dot_product_loop*

#define SIZE 8
typedef int BaseType;

void matrix_vector(BaseType M[SIZE][SIZE],
BaseType V_In[SIZE], BaseType V_Out[SIZE])

{

BaseType i, j;
data_loop:
for (i = 0; i < SIZE; i++) {

V_Out[i] = V_In[0] * M[i][0] +
V_In[1] * M[i][1] +
V_In[2] * M[i][2] +
V_In[3] * M[i][3] +
V_In[4] * M[i][4] +
V_In[5] * M[i][5] +
V_In[6] * M[i][6] +
V_In[7] * M[i][7];

}
}

9

• There is substantial opportunity to exploit
parallelism – starting with the inner loop,
which can be rewritten to eliminate the
data dependency (in this case)

• It should now be clear that there is
significant parallelism in the loop body –
each multiplication could be performed in
parallel and the additions could be done
using an adder tree

* How would you unroll the loop automatically?

Sequential implementation of the unrolled inner loop

• Assuming a multiplication operation has a
latency of 3 cycles, and an addition op
has a latency of 1 cycle then the mults are
completed after 3 cycles, and the
summation takes another log28 = 3 cycles

• Hence the body of the data_loop now
has a latency of 6 cycles and requires 8
multipliers and 7 adders

• We could reuse the adders, but these are
not typically shared, since they cost no
more in LUTs than the MUXes that are
then needed to share them

• One could also get away with using less
multipliers for slightly higher latency

• Here the inner loop is unrolled but not
pipelined, and therefore is executed
sequentially – but note the periods of
underutilization that lead to inefficiency

10

Interval = 6

V in[]

V out[i]

Interval = 9

Latency = 9

V in[]

V out[i]

Latency = 6

Pipelined execution of the inner loop

Observing that each iteration of data_loop
is independent, why not execute them
concurrently? I.e., start executing the next
iteration of the loop while the previous
execution is still processing…
• We could unroll data_loop (just as we

unrolled dot_product_loop), but this
would consume a lot of resources

• Alternatively, start each iteration as soon
as possible using loop pipelining

• Loop pipelined behaviour of the design is
shown on the right

11

Interval = 6

Latency = 9

V in[]

V out[i]

V in[]

V out[i]

Latency = 6

Interval = 3

Pipelined operators e.g. multipliers

• Most functional units on modern FPGAs
are fully pipelined with an interval of 1

• While a multiplier may have a latency of 3
cycles, it can have 3 different operations
in flight simultaneously, with a new
multiply op starting every cycle!

• We could thus reduce the latency of the
inner loop while using fewer multipliers

• The examples on the right use 3
multipliers to perform the 8 multiplications
contained in the inner loop

Note that pipelining is thus possible at the
operator, loop and function level.
Furthermore, pipelining at different levels is
largely independent.

• Sequential iteration execution is shown
here on the left; pipelined on the right

• Concurrent processing of multiplications is
shown followed by the addition operations
that are dependent upon the multiplication
results

12

Interval = 3Interval = 8

V in[]

V out[i]

V in[]

V out[i]

Latency = 8Latency = 8

Storage tradeoffs

• So far we have assumed all the data we need is available each clock cycle, so let’s now
take a look at the memory constraints on acceleration

• In contrast to processors, that have fixed memory architectures, FPGAs and HLS allow us
to explore and leverage different memory structures

• While processors leverage caches to bring in and reuse memory from off-chip and
network attached storage, FPGAs provide flip-flops distributed throughout the device that
allow read-modify-write operations in a single cycle, and BRAMs that can store up to 4KB
amounts of data, but with only one or two accesses per clock cycle

• Note that the relatively small Zynq 7020 device that you are targeting in labs and projects has
only 106,400 (≈13KB) FFs and 140 x 36kbit (≈560KB) BRAMs

• Limited FF storage makes it infeasible to store large matrices on-chip; on the other hand,
using BRAMs instead severely limits the number of concurrent accesses possible

13

Array partitioning

• In practice larger arrays need to be strategically divided into smaller BRAM memories, a
process called array partitioning

• Smaller arrays can be partitioned completely into individual scalar variables and mapped
into FFs

• Matching pipeline choices and array partitioning to maximize the efficiency of operator
usage and memory usage is an important aspect of design space exploration in HLS

• Vivado HLS will perform some array partitioning automatically, but it is often necessary to
guide the tool using the #pragma HLS array_partition variable=XXX directive
with options to completely partition the variable into FFs or to split it in some way across
BRAMs

• For example, the array X containing [1 2 3 4 5 6 7 8 9] is split into sub arrays containing
[1 2 3 4 5] and [6 7 8 9] across two BRAMs using the directive
#pragma HLS array_partition variable=X factor=2 block,
whereas using cyclic rather than block partitioning results in [1 3 5 7 9] and [2 4 6 8], which
doubles data access when the array is to be processed sequentially

14

MV multiplication with array partitioning

#define SIZE 8
typedef int BaseType;

void matrix_vector(BaseType M[SIZE][SIZE],
BaseType V_In[SIZE],
BaseType V_Out[SIZE]) {

#pragma HLS array_partition
variable=M dim=2 complete

#pragma HLS array_partition
variable=V_In complete

int i, j;

data_loop:
for (i = 0; i < SIZE; i++) {

#pragma HLS pipeline II=1

BaseType sum = 0;
dot_product_loop:
for (j = 0; j < SIZE; j++) {

sum += V_In[j] * M[i][j];
}
V_Out[i] = sum;

}
}

V In[1]

V In[2]

V In[3]

V In[4]

V In[5]

V In[6]

V In[7]

V Out[]

V In[0]

M[][0]

M[][2]

M[][1]

M[][3]

M[][4]

M[][5]

M[][6]

i

Loop Latency = 6

Function Interval = 13

Iteration Interval = 1

V in[]

V out[i]

M[][7] Function Latency = 13

• A highly parallel implementation of the
code can be achieved by adding just a
few directives

• The inner dot_product_loop is
automatically unrolled and every use of j
is replaced by constants

Architectures for II=3

• With complete array partitioning and II=3,
muxes are needed to select the desired
array entries each cycle

• Partitioning the arrays with factor=3
avoids the need for muxes but involves
the j loop variable in the array addressing

16

V In[1]

V In[2]

V In[3]

V In[4]

V In[5]

V In[6]

V In[7]

V In[0]

M[][0]

M[][2]

M[][1]

M[][3]

M[][4]

M[][5]

M[][6]

M[][7]

i

To
A

dd
er

s
To

A
dd

er
s

To
A

dd
er

s

M[][0-2]

M[][6-7]

M[][3-5]

i,j%3

To
A

dd
er

sV In[0-2]

V In[3-5]

V In[6-7]

j%3

Partially unrolling & pipelining the inner loop

#define SIZE 8
typedef int BaseType;

void matrix_vector(BaseType M[SIZE][SIZE],
BaseType V_In[SIZE], BaseType V_Out[SIZE]) {

#pragma HLS array_partition
variable=M dim=2 cyclic factor=2

#pragma HLS array_partition
variable=V_In cyclic factor=2

int i, j;
data_loop:
for (i = 0; i < SIZE; i++) {

BaseType sum = 0;
dot_product_loop:
for (j = 0; j < SIZE; j+=2) {

#pragma HLS pipeline II=1

sum += V_In[j] * M[i][j];
sum += V_In[j+1] * M[i][j+1];

}
V_Out[i] = sum;

}
}

17

• Here, the array_partition directives
are not needed if the memory is dual
ported

• But what happens if we unroll the inner
loop more than twice?

Baseline DFT code

#include <math.h> // for cos and sin fns
typedef double IN_TYPE; // input signal data type
typedef double TEMP_TYPE; // temp variable data type
#define N 256 // DFT Size

void dft(IN_TYPE sample_real[N],
IN_TYPE sample_imag[N]) {

int i, j;
TEMP_TYPE w;
TEMP_TYPE c, s;

// Temp arrays to hold intermediate
// frequency domain results
TEMP_TYPE temp_real[N];
TEMP_TYPE temp_imag[N];

// Calculate each freq domain sample iteratively
for (i = 0; i < N; i += 1) {

temp_real[i] = 0;
temp_imag[i] = 0;

// (2 * pi * i)/N
w = (2.0 * 3.141592653589 / N) * (TEMP_TYPE) i;

// Calculate the jth freq sample sequentially
for (j = 0; j < N; j += 1) {

// Utilize HLS tool to calculate sine and
// cosine values for angle –j*w radians
c = cos(j * w);
s = -sin(j * w); // clockwise rotation

// Multiply the current phasor with the
// appropriate input sample and keep
// running sum
temp_real[i] += (sample_real[j] * c –

sample_imag[j] * s);
temp_imag[i] += (sample_real[j] * s +

sample_imag[j] * c);
}

}

// Perform an inplace DFT, i.e., copy result into
// the input arrays
for (i = 0; i < N; i += 1) {

sample_real[i] = temp_real[i];
sample_imag[i] = temp_imag[i];

}
}

18

The code has to deal with additional complications:
1. Complex samples & complex mults/adds
2. The latency inherent in floating point operations
3. The scalability of storing a large S matrix

Schedule & architecture for baseline code

19

sample[i]

sample[i]

double

sin/cos

int to double

doubledouble
double

double

Compute w Run inner loop iterations Copy Result

double
int to double

Compute wRun remaining

CORDIC x +

temp[0]
temp[1]
temp[2]

temp[N-1]

...

sample[0]
sample[1]
sample[2]

sample[N-1]

...

x i
/
w

N

x j

2 𝜋

DFT optimization

• Implementing floating point operations is
typically very expensive and requires
many pipeline stages, particularly for
double precision

• This significantly affects the performance
of the loop when executed sequentially

• With pipelining, the effect of these high-
latency operations is less critical, since
multiple executions of the loop can
execute concurrently

• However, the recurrence in accumulating
temp_real and temp_imag limits the
achievable II when pipelining the inner
loop

20

sin/cos
double

int to double
sample[i]

sample[i]
double
double

Loop Interval = 4

double
double

DFT optimization – achieving II=1

• Use of 64-bit double data types hampers performance, so one opportunity to improve the
performance is to use 32-bit float or 16-bit half data types instead – if greater loss of
precision is acceptable, replacing the floating point data types with fixed point data can
help reduce area and boost performance significantly – perhaps allowing the loop to be
pipelined at II=1

• A more general approach to achieving II=1 is to avoid the recurrences by swapping the
inner and outer loops, an optimization that is called loop interchange

• It may not be obvious that we can swap the inner and outer loops here because of the extra
code inside the outer i loop, but the diagonal symmetry inherent in the S matrix allows i and j
to be interchanged in the computation of w

21

temp real[0]
temp real[1]
temp real[2]
temp real[3]
temp real[4]
temp real[5]
temp real[6]
temp real[7]

j
i

DFT optimization – sin & cos lookups

• The trigonometric functions can also be eliminated by storing the sin and cos values for
the second row of the S matrix on-chip, since all S matrix entries are represented in this
row alone

• Storing just the one row of S for a cost of O(N) storage and appropriately indexing into it saves
a factor of O(N) storage overall – this is significant as N scales

• Accessing multiple entries per cycle of this one table is fraught though, because both odd
and even entries are needed to construct the entries for any other row in order to compute
the entries of the frequency domain vector

• Since these S values are only ever read though, they can be treated as a ROM, which Vivado
HLS will readily replicate

22

DFT optimization - interface

• Instead of using the input sample_real and sample_imag values to return the DFT
results in place, separate output ports for the temp_real and temp_imag results would
avoid the need for temporary storage and not constrain the computation of the results to
suit the storage arrangement chosen for the inputs

23

Concluding remarks

• The DFT is a fundamental signal processing operation
• At its core, it relies on matrix-vector multiplication, which we looked at in detail to optimize

its performance
• We considered several opportunities for optimizing functionally correct DFT code,

including
• Pipelining
• Data type conversion
• Loop interchange
• Trig function lookups

• In the lab this week, you’ll take a careful look at optimizing matrix-vector multiplication and
applying these techniques to DFT software

• Next week, we’ll look at optimizing a fast approach to computing DFTs

24

