
Messages of the week

• Projects
• Time to meet and discuss project plans with your team
• Let me know ASAP if your team has a preference for which lab session next week to 

present during – I will allocate date if no preference received by Monday

• Seminars
• Meet with group, read and discuss papers suggested for your topic

• Labs
• Discussion



Ch 4. Discrete Fourier 
Transform



Discrete Fourier Transform

• DFT is a fundamental signal processing technique
• Transforms a discrete (fixed number of samples) signal in the time domain to a discrete 

signal in the frequency domain i.e. as a sum of sinusoids
• This allows for advanced filtering and modulation techniques as well as fast large-integer and 

polynomial mutiplication
• At its core, DFT performs a matrix-vector multiplication, where the matrix is a fixed set of 

coefficients

• I assume you have read the mathematical introduction to DFTs at the start of Ch. 4 as my 
review will be very brief
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DFT

• The DFT converts a finite number of equally spaced samples in time into a finite number 
of complex sinusoids

• Given N real-valued samples of signal g[] in the time domain, N/2+1 complex signal 
values, G[], are computed in the frequency domain using the expression G	=	S	! g, 

where 𝑆 =
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A visualization of DFT coefficients (8 point DFT)
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• Note the abundance of symmetry in matrix S
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DFT as matrix-vector multiplication

• DFT can be computed as a matrix-vector 
multiplication 

• Code to the right provides a good 
baseline

• The algorithm comprises a nested loop 
that, while simple, offers many design 
choices

• Memory organization is one important 
factor – use wires, registers, RAM, FIFO 
to store variables? Each comes with its 
own area/performance tradeoff.

• Amount of parallelism to exploit (when its 
available) is another, with obvious 
area/performance tradeoffs

#define SIZE 8
typedef int BaseType;

void matrix_vector(BaseType M[SIZE][SIZE],
BaseType V_In[SIZE], 
BaseType V_Out[SIZE]) {

int i, j;
data_loop:
for (i = 0; i < SIZE; i++) {

BaseType sum = 0;
dot_product_loop:
for (j = 0; j < SIZE; j++) {

sum += V_In[j] * M[i][j];
}
V_Out[i] = sum;

}
}
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Sequential architecture

When the MV_mult code is compiled without 
HLS directives, a sequential architecture 
with one multiplier and one adder is 
synthesized
• Logic to access the V_in, V_out and M 

arrays, stored in BRAMs, is produced
• The result is a design that does not use 

much area, but has a high task latency 
and task interval
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Manually unrolling the inner, dot_product_loop

#define SIZE 8
typedef int BaseType;

void matrix_vector(BaseType M[SIZE][SIZE],  
BaseType V_In[SIZE], BaseType V_Out[SIZE]) 

{

BaseType i, j;
data_loop:
for (i = 0; i < SIZE; i++) {

V_Out[i] = V_In[0] * M[i][0] + 
V_In[1] * M[i][1] + 
V_In[2] * M[i][2] +
V_In[3] * M[i][3] +                 
V_In[4] * M[i][4] + 
V_In[5] * M[i][5] +
V_In[6] * M[i][6] + 
V_In[7] * M[i][7];

}
}
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• There is substantial opportunity to exploit 
parallelism – starting with the inner loop, 
which can be rewritten to eliminate the 
data dependency (in this case)

• It should now be clear that there is 
significant parallelism in the loop body –
each multiplication could be performed in 
parallel and the additions could be done 
using an adder tree



Manually unrolling the inner, dot_product_loop
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• There is substantial opportunity to exploit 
parallelism – starting with the inner loop, 
which can be rewritten to eliminate the 
data dependency (in this case)

• It should now be clear that there is 
significant parallelism in the loop body –
each multiplication could be performed in 
parallel and the additions could be done 
using an adder tree

• A dataflow graph for this computation is 
depicted on the right
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Manually unrolling the inner, dot_product_loop*

#define SIZE 8
typedef int BaseType;

void matrix_vector(BaseType M[SIZE][SIZE],  
BaseType V_In[SIZE], BaseType V_Out[SIZE]) 

{

BaseType i, j;
data_loop:
for (i = 0; i < SIZE; i++) {

V_Out[i] = V_In[0] * M[i][0] + 
V_In[1] * M[i][1] + 
V_In[2] * M[i][2] +
V_In[3] * M[i][3] +                 
V_In[4] * M[i][4] + 
V_In[5] * M[i][5] +
V_In[6] * M[i][6] + 
V_In[7] * M[i][7];

}
}
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• There is substantial opportunity to exploit 
parallelism – starting with the inner loop, 
which can be rewritten to eliminate the 
data dependency (in this case)

• It should now be clear that there is 
significant parallelism in the loop body –
each multiplication could be performed in 
parallel and the additions could be done 
using an adder tree

* How would you unroll the loop automatically?



Sequential implementation of the unrolled inner loop

• Assuming a multiplication operation has a 
latency of 3 cycles, and an addition op 
has a latency of 1 cycle then the mults are 
completed after 3 cycles, and the 
summation takes another log28 = 3 cycles

• Hence the body of the data_loop now 
has a latency of 6 cycles and requires 8 
multipliers and 7 adders

• We could reuse the adders, but these are 
not typically shared, since they cost no 
more in LUTs than the MUXes that are 
then needed to share them

• One could also get away with using less 
multipliers for slightly higher latency

• Here the inner loop is unrolled but not 
pipelined, and therefore is executed 
sequentially – but note the periods of 
underutilization that lead to inefficiency
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Pipelined execution of the inner loop

Observing that each iteration of data_loop 
is independent, why not execute them 
concurrently? I.e., start executing the next 
iteration of the loop while the previous 
execution is still processing…
• We could unroll data_loop (just as we 

unrolled dot_product_loop), but this 
would consume a lot of resources

• Alternatively, start each iteration as soon 
as possible using loop pipelining

• Loop pipelined behaviour of the design is 
shown on the right
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Pipelined operators e.g. multipliers

• Most functional units on modern FPGAs 
are fully pipelined with an interval of 1

• While a multiplier may have a latency of 3 
cycles, it can have 3 different operations 
in flight simultaneously, with a new 
multiply op starting every cycle!

• We could thus reduce the latency of the 
inner loop while using fewer multipliers

• The examples on the right use 3 
multipliers to perform the 8 multiplications 
contained in the inner loop

Note that pipelining is thus possible at the 
operator, loop and function level. 
Furthermore, pipelining at different levels is 
largely independent.

• Sequential iteration execution is shown 
here on the left; pipelined on the right

• Concurrent processing of multiplications is 
shown followed by the addition operations 
that are dependent upon the multiplication 
results
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Storage tradeoffs

• So far we have assumed all the data we need is available each clock cycle, so let’s now 
take a look at the memory constraints on acceleration

• In contrast to processors, that have fixed memory architectures, FPGAs and HLS allow us 
to explore and leverage different memory structures

• While processors leverage caches to bring in and reuse memory from off-chip and 
network attached storage, FPGAs provide flip-flops distributed throughout the device that 
allow read-modify-write operations in a single cycle, and BRAMs that can store up to 4KB 
amounts of data, but with only one or two accesses per clock cycle

• Note that the relatively small Zynq 7020 device that you are targeting in labs and projects has 
only 106,400 (≈13KB) FFs and 140 x 36kbit (≈560KB) BRAMs

• Limited FF storage makes it infeasible to store large matrices on-chip; on the other hand, 
using BRAMs instead severely limits the number of concurrent accesses possible
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Array partitioning

• In practice larger arrays need to be strategically divided into smaller BRAM memories, a 
process called array partitioning

• Smaller arrays can be partitioned completely into individual scalar variables and mapped 
into FFs

• Matching pipeline choices and array partitioning to maximize the efficiency of operator 
usage and memory usage is an important aspect of design space exploration in HLS

• Vivado HLS will perform some array partitioning automatically, but it is often necessary to 
guide the tool using the #pragma HLS array_partition variable=XXX directive 
with options to completely partition the variable into FFs or to split it in some way across 
BRAMs

• For example, the array X containing [1 2 3 4 5 6 7 8 9] is split into sub arrays containing          
[1 2 3 4 5] and [6 7 8 9] across two BRAMs using the directive                                       
#pragma HLS array_partition variable=X factor=2 block, 
whereas using cyclic rather than block partitioning results in [1 3 5 7 9] and [2 4 6 8], which 
doubles data access when the array is to be processed sequentially
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MV multiplication with array partitioning

#define SIZE 8
typedef int BaseType;

void matrix_vector(BaseType M[SIZE][SIZE],   
BaseType V_In[SIZE], 
BaseType V_Out[SIZE]) {

#pragma HLS array_partition     
variable=M dim=2 complete

#pragma HLS array_partition 
variable=V_In complete

int i, j;

data_loop:
for (i = 0; i < SIZE; i++) {

#pragma HLS pipeline II=1

BaseType sum = 0;
dot_product_loop:
for (j = 0; j < SIZE; j++) {

sum += V_In[j] * M[i][j];
}
V_Out[i] = sum;

}
}
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• A highly parallel implementation of the 
code can be achieved by adding just a 
few directives

• The inner dot_product_loop is 
automatically unrolled and every use of j
is replaced by constants



Architectures for II=3

• With complete array partitioning and II=3, 
muxes are needed to select the desired 
array entries each cycle

• Partitioning the arrays with factor=3
avoids the need for muxes but involves 
the j loop variable in the array addressing
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Partially unrolling & pipelining the inner loop

#define SIZE 8
typedef int BaseType;

void matrix_vector(BaseType M[SIZE][SIZE], 
BaseType V_In[SIZE], BaseType V_Out[SIZE]) {

#pragma HLS array_partition 
variable=M dim=2 cyclic factor=2

#pragma HLS array_partition 
variable=V_In cyclic factor=2

int i, j;
data_loop:
for (i = 0; i < SIZE; i++) {

BaseType sum = 0;
dot_product_loop:
for (j = 0; j < SIZE; j+=2) {

#pragma HLS pipeline II=1

sum += V_In[j] * M[i][j];
sum += V_In[j+1] * M[i][j+1];

}
V_Out[i] = sum;

}
}
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• Here, the array_partition directives 
are not needed if the memory is dual 
ported

• But what happens if we unroll the inner 
loop more than twice?



Baseline DFT code

#include <math.h>         // for cos and sin fns
typedef double IN_TYPE;   // input signal data type
typedef double TEMP_TYPE; // temp variable data type
#define N 256             // DFT Size

void dft(IN_TYPE sample_real[N], 
IN_TYPE sample_imag[N]) {

int i, j;
TEMP_TYPE w;
TEMP_TYPE c, s;

// Temp arrays to hold intermediate 
// frequency domain results
TEMP_TYPE temp_real[N];
TEMP_TYPE temp_imag[N];

// Calculate each freq domain sample iteratively
for (i = 0; i < N; i += 1) {

temp_real[i] = 0;
temp_imag[i] = 0;

// (2 * pi * i)/N
w = (2.0 * 3.141592653589 / N) * (TEMP_TYPE) i;

// Calculate the jth freq sample sequentially
for (j = 0; j < N; j += 1) {

// Utilize HLS tool to calculate sine and       
// cosine values for angle –j*w radians
c = cos(j * w);
s = -sin(j * w); // clockwise rotation

// Multiply the current phasor with the 
// appropriate input sample and keep
// running sum
temp_real[i] += (sample_real[j] * c –

sample_imag[j] * s);
temp_imag[i] += (sample_real[j] * s + 

sample_imag[j] * c);
}

}

// Perform an inplace DFT, i.e., copy result into 
// the input arrays
for (i = 0; i < N; i += 1) {

sample_real[i] = temp_real[i];
sample_imag[i] = temp_imag[i];

}
}
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The code has to deal with additional complications:
1. Complex samples & complex mults/adds
2. The latency inherent in floating point operations
3. The scalability of storing a large S matrix



Schedule & architecture for baseline code
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DFT optimization

• Implementing floating point operations is 
typically very expensive and requires 
many pipeline stages, particularly for 
double precision

• This significantly affects the performance 
of the loop when executed sequentially

• With pipelining, the effect of these high-
latency operations is less critical, since 
multiple executions of the loop can 
execute concurrently

• However, the recurrence in accumulating 
temp_real and temp_imag limits the 
achievable II when pipelining the inner 
loop
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DFT optimization – achieving II=1

• Use of 64-bit double data types hampers performance, so one opportunity to improve the 
performance is to use 32-bit float or 16-bit half data types instead – if greater loss of 
precision is acceptable, replacing the floating point data types with fixed point data can 
help reduce area and boost performance significantly – perhaps allowing the loop to be 
pipelined at II=1

• A more general approach to achieving II=1 is to avoid the recurrences by swapping the 
inner and outer loops, an optimization that is called loop interchange

• It may not be obvious that we can swap the inner and outer loops here because of the extra 
code inside the outer i loop, but the diagonal symmetry inherent in the S matrix allows i and j
to be interchanged in the computation of w
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DFT optimization – sin & cos lookups

• The trigonometric functions can also be eliminated by storing the sin and cos values for 
the second row of the S matrix on-chip, since all S matrix entries are represented in this 
row alone

• Storing just the one row of S for a cost of O(N) storage and appropriately indexing into it saves 
a factor of O(N) storage overall – this is significant as N scales

• Accessing multiple entries per cycle of this one table is fraught though, because both odd 
and even entries are needed to construct the entries for any other row in order to compute 
the entries of the frequency domain vector

• Since these S values are only ever read though, they can be treated as a ROM, which Vivado 
HLS will readily replicate
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DFT optimization - interface

• Instead of using the input sample_real and sample_imag values to return the DFT 
results in place, separate output ports for the temp_real and temp_imag results would 
avoid the need for temporary storage and not constrain the computation of the results to 
suit the storage arrangement chosen for the inputs
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Concluding remarks

• The DFT is a fundamental signal processing operation
• At its core, it relies on matrix-vector multiplication, which we looked at in detail to optimize 

its performance
• We considered several opportunities for optimizing functionally correct DFT code, 

including
• Pipelining
• Data type conversion
• Loop interchange
• Trig function lookups

• In the lab this week, you’ll take a careful look at optimizing matrix-vector multiplication and 
applying these techniques to DFT software

• Next week, we’ll look at optimizing a fast approach to computing DFTs
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