Messages of the week

* Projects
« Team formation pretty much done — two people looking for a team to join
« Time to meet and discuss project plans
« Time available next week to prepare for Week 5 presentations

* Seminars
* Please complete your selection this week
« Meet with group, read and discuss papers suggested for your topic

« Labs

 Discussion

Ch 3. CORDIC

Overview

« CORDIC (Coordinate Rotation Digital Computer) is an efficient technique
to evaluate trigonometric, hyperbolic, and other mathematical functions
« ltis a digit-by-digit algorithm that produces one additional digit of precision per iteration

« We can therefore tune the accuracy of the algorithm to the application requirements,
which is another common design evaluation metric alongside performance and
resource usage

« CORDIC performs simple computations using only addition, subtraction, bit shifting,
and table lookups, which are efficient to implement in hardware

« CORDIC has been used in maths co-processors, digital signal processing, Fourier
transforms, and provided as IP cores to calculate trigonometric functions in FPGAs

* In this chapter we create an optimized CORDIC core using HLS

« The main HLS optimization that is highlighted in this chapter is choosing
the correct number representation for the variables

* See pages 55-66 of the text for an introduction to and background on the
CORDIC algorithm

CORDIC rotation

 The idea is to approach a target » At each step, the rotated vector v,
angle ¢ by rotating vector v, IS given by:
_ 1 =027 Xi-1
2 Vi =K [aiz_i 1] [yi—1]
,Target Angle ¢
, where

y=sind--

Larg(vi-1) < ¢
-1, arg(vl 1) = ¢

K; =
) l J1+2 ~2i

and

K = lim [Ty K; ~ 0.607252935

n—>0o

CORDIC algorithm

// The file cordic.h holds definitions for the data types and constant values

#include "cordic.h"

// The cordic_phase array holds the angle for the current rotation

// cordic_phase[0] =~ 0.785 =~ arctan(2”-0) = arctan(l) in radians

// cordic_phase[l] =~ 0.463 =~ arctan (2"-1) = arctan(0.5) in radians

void cordic(THETA_TYPE theta, COS_SIN_TYPE &s, COS_SIN TYPE &c)
{
// Set the initial vector that we will rotate
// current_cos = I; current_sin = Q
COS_SIN_TYPE current_cos = 0.60725;
COS_SIN_TYPE current_sin = 0.0;

// set magnitude of initial
// vector to the reciprocal
// of infinite CORDIC gain, K
COS_SIN_TYPE factor = 1.0;
// This loop iteratively rotates the initial vector to find the
// sine and cosine values corresponding to the input theta angle
for (int j = 0; j < NUM_ITERATIONS; j++) {
// Determine if we are rotating by a positive or negative angle
int sigma = (theta < 0) ? -1 : 1;

// Multiply previous iteration by 2" (-3j)
COS_SIN TYPE cos_shift = current cos * sigma * factor;
COS_SIN TYPE sin shift = current sin * sigma * factor;

// Perform the rotation
current_cos = current cos - sin_shift;
current_sin = current_sin + cos_shift;

// Determine the new theta
theta = theta - sigma * cordic_phase[j];

factor = factor / 2;

}

// Set the final sine and cosine values
s = current sin; ¢ = current cos;

Listing of cordic.h

#ifndef CORDIC_H
#define CORDIC_H
#include "ap_ fixed.h"

typedef float THETA TYPE;
typedef float COS_SIN TYPE;

const int NUM ITERATIONS=32;
static THETA TYPE
cordic_phase[64]1={0.78539816339744828000,0.46364760900080609000,

0.24497866312686414000,..,0.00000000000000000011};// arctan(2”-1i)

void cordic(THETA_ TYPE theta, COS_SIN_TYPE &s, COS_SIN TYPE &c);
#endif

Arbitrary precision numbers

Rather than being restricted to using data types that are 8, 16, 32 or 64 bits wide, Vivado
HLS provides several C++ template classes to represent arbitrary precision numbers
(with specifically chosen bit widths)

The ap_int<>and ap uint<> integer template classes require a single integer template parameter to
define their width

The ap fixed<> and ap ufixed<> fixed point template classes require two integer template arguments
that define (1) the overall width (total number of bits) and (2) the number of integer bits

For example:

#include "ap int.h”

ap uint<l15> a = 0x4000;

ap uint<l15> b = 0x4000;

// p is assigned to 0x10000000
ap uint<30> p = axb;

#include "ap fixed.h”

// 4.0 represented with 12 integer bits

ap ufixed<15,12> a = 4.0; // a = 0b000000000100000

// 4.0 represented with 12 integer bits

ap ufixed<15,12> b = 4.0;

// p 1is assigned to 16.0 represented with 12 integer bits
ap ufixed<18,12> p = axb; // p = 0b000000010000000000

Overflow and underflow

« Overflow occurs when a number is larger than the largest number that
can be represented in a given number of bits

 Underflow occurs when a number is smaller than the smallest number
that can be represented

« Both are commonly handled by dropping the most significant bits of the
original number in a process often termed wrapping

« Beware that wrapping can cause +ve numbers to become —ve and vice-versa

25 24 23 22 21 20 2-1 2-2 2-3 2-4 ‘

0 0o 1 0 1 1 0 1 0 0 | =11.25
0o 1 0 1 1 0 1 0 0 | =11.25

1 0 1 1 0 1 0 0 | =11.25
0 1 1 0 1 0 0 | =325

Rounding

 When a number cannot be represented precisely in a given number of
fractional bits, rounding is necessary

« There are several ways of doing this — see quantization modes in Xilinx Vivado HLS
User Guide, UG902, p556 for more details

Just drop the extra fractional bits
Called rounding down
Corresponds to £1loor ()

A better way may be to round
to the nearest even number, if the number can’t be
represented exactly, as implemented by 1rint ()

0b0100.00 = 4.0 0b0100.0 = 4.0 0b0100.00 = 4.0 0b0100.0 = 4.0
0b0011.11 = 3.75 0b0011.1 = 3.5 0b0011.11 = 3.75 060100.0 = 4.0
0b0011.10 = 3.5 0b0011.1 = 3.5 0b0011.10 = 3.5 0b0011.1 = 3.5
0b0011.01 = 3.25 0b0011.0 = 3.0 0b0011.01 = 3.25 0b0011.0 = 3.0
0b0011.00 = 3.0 %Roun‘?to _, 0b0011.0 = 3.0 0b0011.00 = 3.0 _)Roundto _, 0b0011.0° = 3.0
0b1100.00 = —40 hegatve 0b1100.0 = —4.0 0b1100.00 = —4.0 ~ Nearest 0b1100.0 = —4.0
0b1011.11 = —4.25 Infinity 0obl0o11.1 = —4.5 0b1011.11 = —4.25 Even 0b1100.0 = —4.0
0b1011.10 = —4.5 0b1011.1 = —45 0b1011.10 = —4.5 0b1011.1 = —4.5
0b1011.01 = —4.75 0b1011.0 = —5.0 0b1011.01 = —4.75 0b1011.0 = —5.0
0b1011.00 = —59 0b1011.0 = —50 0b1011.00 = —5.0 0b1011.0 = —5.0

Also could round up, asin ceil ()
Or round to zero, as in trunc ()
Or round to infinity, as in round ()

Floating point

* Vivado HLS can synthesize float data types, BUT they will consume
considerable resources and have a high latency.

« When targetting FPGAs, it is FAR BETTER to use fixed point arithmetic to
represent fractional numbers

« Given that the desired precision, performance and utilization are
application/designer dependent, there is no standard approach as to
which fixed point representation should be used

« A standard approach is to start with a floating point representation to
obtain a functionally correct implementation. THEN optimize the number
representation to reduce resource usage and increase performance

SSSSSS

CORDIC optimizations

« The original code works using either floating or fixed point data types
* |t contains several multiplications involving sigma and factor

« Since a common aim is to eliminate the multiplications, the code can be
restructured using shift operations and alternative code branches to
update the angle of the rotated vector

SSSSSS

Fixed-point and optimized CORDIC

// The file cordic.h holds definitions for the data types and // Determine if we are rotating by a positive
// constant values // or negative angle
#include "cordic.h" if(theta >= 0) {
// Perform the rotation
// The cordic_phase array holds the angle for the current rotation current_cos = current _cos - sin_shift;
// cordic_phase[0] =~ 0.785 current sin = current sin + cos_shift;
// cordic_phase[l] =~ 0.463
// Determine the new theta
void cordic(THETA TYPE theta, COS_SIN TYPE &s, COS_SIN TYPE &c) theta = theta - cordic_phase[j];
{ } else {
// Set the initial vector that we will rotate // Perform the rotation
// current _cos = I; current_sin = Q current_cos = current cos + sin_shift;
COS_SIN_TYPE current_cos = 0.60725; current_sin = current_sin - cos_shift;

COS_SIN_TYPE current_sin = 0.0;
// Determine the new theta

// This loop iteratively rotates the initial vector to find the theta = theta + cordic_phase[]j];
// sine and cosine values corresponding to the input theta angle } // end if
for (int j = 0; j < NUM_ITERATIONS; j++) { } // end for

// Multiply previous iteration by 2" (-j). This is equivalent

// to a right shift by j on a fixed-point number. // Set the final sine and cosine values

COS_SIN TYPE cos_shift
COS_SIN TYPE sin_shift

current_cos >> j; s = current sin; ¢ = current cos;

current_sin >> j; }

CORDIC optimizations

« We can also tune the accuracy of the algorithm by varying the number of
iterations of the main loop, however, not without impacting on loop latency

* Inthe lab, | ask you to take a look not just at these optimizations, but also

to examine the impact of loop unrolling and pipelining on the performance
and utilization as well

SSSSSS

