
Messages of the week

• Projects
• Team formation pretty much done – two people looking for a team to join
• Time to meet and discuss project plans
• Time available next week to prepare for Week 5 presentations

• Seminars
• Please complete your selection this week
• Meet with group, read and discuss papers suggested for your topic

• Labs
• Discussion

Ch 3. CORDIC

Overview

• CORDIC (Coordinate Rotation Digital Computer) is an efficient technique
to evaluate trigonometric, hyperbolic, and other mathematical functions

• It is a digit-by-digit algorithm that produces one additional digit of precision per iteration
• We can therefore tune the accuracy of the algorithm to the application requirements,

which is another common design evaluation metric alongside performance and
resource usage

• CORDIC performs simple computations using only addition, subtraction, bit shifting,
and table lookups, which are efficient to implement in hardware

• CORDIC has been used in maths co-processors, digital signal processing, Fourier
transforms, and provided as IP cores to calculate trigonometric functions in FPGAs

• In this chapter we create an optimized CORDIC core using HLS
• The main HLS optimization that is highlighted in this chapter is choosing

the correct number representation for the variables
• See pages 55-66 of the text for an introduction to and background on the

CORDIC algorithm 2

CORDIC rotation

• The idea is to approach a target
angle 𝜙 by rotating vector vi

• At each step, the rotated vector vi
is given by:

𝑣! = 𝐾!
1 −𝜎!2"!

𝜎!2"! 1
𝑥!"#
𝑦!"#

where

𝜎! = #
1, arg(𝑣!"#) < 𝜙
−1, arg(𝑣!"#) ≥ 𝜙

𝐾! =
1

1 + 2"$!

• and
𝐾 = lim

%→'
∏!()
%"#𝐾! ≈ 0.607252935 3

Target Angle f

1 x= cosf

y= sinf

4
3

2

CORDIC algorithm
// The file cordic.h holds definitions for the data types and constant values
#include "cordic.h"

// The cordic_phase array holds the angle for the current rotation
// cordic_phase[0] =~ 0.785 =~ arctan(2^-0) = arctan(1) in radians
// cordic_phase[1] =~ 0.463 =~ arctan (2^-1) = arctan(0.5) in radians

void cordic(THETA_TYPE theta, COS_SIN_TYPE &s, COS_SIN_TYPE &c)
{
// Set the initial vector that we will rotate
// current_cos = I; current_sin = Q
COS_SIN_TYPE current_cos = 0.60725; // set magnitude of initial
COS_SIN_TYPE current_sin = 0.0; // vector to the reciprocal

// of infinite CORDIC gain, K
COS_SIN_TYPE factor = 1.0;
// This loop iteratively rotates the initial vector to find the
// sine and cosine values corresponding to the input theta angle
for (int j = 0; j < NUM_ITERATIONS; j++) {

// Determine if we are rotating by a positive or negative angle
int sigma = (theta < 0) ? -1 : 1;

// Multiply previous iteration by 2^(-j)
COS_SIN_TYPE cos_shift = current_cos * sigma * factor;
COS_SIN_TYPE sin_shift = current_sin * sigma * factor;

// Perform the rotation
current_cos = current_cos - sin_shift;
current_sin = current_sin + cos_shift;

// Determine the new theta
theta = theta - sigma * cordic_phase[j];

factor = factor / 2;
}

// Set the final sine and cosine values
s = current_sin; c = current_cos;

}
4

Listing of cordic.h

#ifndef CORDIC_H

#define CORDIC_H
#include "ap_fixed.h"

typedef float THETA_TYPE;
typedef float COS_SIN_TYPE;

const int NUM_ITERATIONS=32;

static THETA_TYPE
cordic_phase[64]={0.78539816339744828000,0.46364760900080609000,

0.24497866312686414000,…,0.00000000000000000011};// arctan(2^-i)

void cordic(THETA_TYPE theta, COS_SIN_TYPE &s, COS_SIN_TYPE &c);

#endif

Arbitrary precision numbers
• Rather than being restricted to using data types that are 8, 16, 32 or 64 bits wide, Vivado

HLS provides several C++ template classes to represent arbitrary precision numbers
(with specifically chosen bit widths)

• The ap_int<> and ap_uint<> integer template classes require a single integer template parameter to
define their width

• The ap_fixed<> and ap_ufixed<> fixed point template classes require two integer template arguments
that define (1) the overall width (total number of bits) and (2) the number of integer bits

• For example:

#include ”ap_int.h”
ap_uint<15> a = 0x4000;
ap_uint<15> b = 0x4000;
// p is assigned to 0x10000000
ap_uint<30> p = a∗b;

#include ”ap_fixed.h”
// 4.0 represented with 12 integer bits
ap_ufixed<15,12> a = 4.0; // a = 0b000000000100000
// 4.0 represented with 12 integer bits
ap_ufixed<15,12> b = 4.0;
// p is assigned to 16.0 represented with 12 integer bits
ap_ufixed<18,12> p = a∗b; // p = 0b000000010000000000 5

Overflow and underflow

• Overflow occurs when a number is larger than the largest number that
can be represented in a given number of bits

• Underflow occurs when a number is smaller than the smallest number
that can be represented

• Both are commonly handled by dropping the most significant bits of the
original number in a process often termed wrapping

• Beware that wrapping can cause +ve numbers to become –ve and vice-versa

6

25 24 23 22 21 20 2­1 2­2 2­3 2­4
0 0 1 0 1 1

0 1 0 1 1
1 0 1 1

0 1 1

0
0
0
0

1
1
1
1

0
0
0
0

0 = 11.25
0 = 11.25
0 = 11.25
0 = 3.25

Rounding

• When a number cannot be represented precisely in a given number of
fractional bits, rounding is necessary

• There are several ways of doing this – see quantization modes in Xilinx Vivado HLS
User Guide, UG902, p556 for more details

7

0b0100.00
0b0011.11
0b0011.10
0b0011.01
0b0011.00
0b1100.00
0b1011.11
0b1011.10
0b1011.01
0b1011.00

= 4.0
= 3.75
= 3.5
= 3.25
= 3.0
= ­4.0
= ­4.25
= ­4.5
= ­4.75
= ­5.0

Round to

Infinity
→ Negative →

0b0100.0
0b0011.1
0b0011.1

= 4.0
= 3.5
= 3.5
= 3.0
= 3.0
= ­4.0
= ­4.5
= ­4.5
= ­5.0

0b0011.0
0b0011.0
0b1100.0
0b1011.1
0b1011.1
0b1011.0
0b1011.0 = ­5.0

0b0100.00
0b0011.11
0b0011.10
0b0011.01
0b0011.00
0b1100.00
0b1011.11
0b1011.10
0b1011.01
0b1011.00

= 4.0
= 3.75
= 3.5
= 3.25
= 3.0
= ­4.0
= ­4.25
= ­4.5
= ­4.75
= ­5.0

Round to
→ Nearest
Even

→

0b0100.0
0b0100.0
0b0011.1
0b0011.0
0b0011.0
0b1100.0
0b1100.0
0b1011.1
0b1011.0
0b1011.0

= 4.0
= 4.0
= 3.5
= 3.0
= 3.0
= ­4.0
= ­4.0
= ­4.5
= ­5.0
= ­5.0

Just drop the extra fractional bits
Called rounding down
Corresponds to floor()

A better way may be to round
to the nearest even number, if the number can’t be
represented exactly, as implemented by lrint()

Also could round up, as in ceil()
Or round to zero, as in trunc()
Or round to infinity, as in round()

Floating point

• Vivado HLS can synthesize float data types, BUT they will consume
considerable resources and have a high latency.

• When targetting FPGAs, it is FAR BETTER to use fixed point arithmetic to
represent fractional numbers

• Given that the desired precision, performance and utilization are
application/designer dependent, there is no standard approach as to
which fixed point representation should be used

• A standard approach is to start with a floating point representation to
obtain a functionally correct implementation. THEN optimize the number
representation to reduce resource usage and increase performance

8

CORDIC optimizations

• The original code works using either floating or fixed point data types
• It contains several multiplications involving sigma and factor

• Since a common aim is to eliminate the multiplications, the code can be
restructured using shift operations and alternative code branches to
update the angle of the rotated vector

9

Fixed-point and optimized CORDIC

// The file cordic.h holds definitions for the data types and
// constant values

#include "cordic.h"

// The cordic_phase array holds the angle for the current rotation

// cordic_phase[0] =~ 0.785
// cordic_phase[1] =~ 0.463

void cordic(THETA_TYPE theta, COS_SIN_TYPE &s, COS_SIN_TYPE &c)
{

// Set the initial vector that we will rotate
// current_cos = I; current_sin = Q

COS_SIN_TYPE current_cos = 0.60725;
COS_SIN_TYPE current_sin = 0.0;

// This loop iteratively rotates the initial vector to find the
// sine and cosine values corresponding to the input theta angle

for (int j = 0; j < NUM_ITERATIONS; j++) {
// Multiply previous iteration by 2^(-j). This is equivalent
// to a right shift by j on a fixed-point number.

COS_SIN_TYPE cos_shift = current_cos >> j;
COS_SIN_TYPE sin_shift = current_sin >> j;

// Determine if we are rotating by a positive
// or negative angle

if(theta >= 0) {
// Perform the rotation
current_cos = current_cos - sin_shift;

current_sin = current_sin + cos_shift;

// Determine the new theta
theta = theta - cordic_phase[j];

} else {

// Perform the rotation
current_cos = current_cos + sin_shift;

current_sin = current_sin - cos_shift;

// Determine the new theta

theta = theta + cordic_phase[j];
} // end if

} // end for

// Set the final sine and cosine values

s = current_sin; c = current_cos;
}

10

CORDIC optimizations

• The original code works using either floating or fixed point data types
• It contains several multiplications involving sigma and factor

• Since a common aim is to eliminate the multiplications, the code can be
restructured using shift operations and alternative code branches to
update the angle of the rotated vector

• We can also tune the accuracy of the algorithm by varying the number of
iterations of the main loop, however, not without impacting on loop latency

• In the lab, I ask you to take a look not just at these optimizations, but also
to examine the impact of loop unrolling and pipelining on the performance
and utilization as well

11

