
Messages of the day

• Labs begin in earnest today – handin due 5pm next Monday
• Submit a PDF via the link on the course website
• This is quite a long lab; the lab for Week 3, which should be released by next Monday, 

is considerably shorter

• Please organize yourselves into project teams this week – please email 
me the membership and a proposed topic

• Start meeting to develop a plan of attack

• Announcement on seminar topic registration should arrive by end of week 
– please log into Moodle over the coming week and register for the 
available topic that most interests you



Ch 2. FIR filters



Goal of this chapter

• Provide a basic understanding of the process of taking an algorithm and creating a good 
hardware design using high-level synthesis

• Provide an example of how we will study the text

Study method followed in this course:
• I assume you have read the selected materials before the lecture
• During the lecture, I will review and we will discuss the HLS concepts presented (but not 

generally the mathematical background)
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1D Convolution

Given the impulse response of a finite impulse response (FIR) filter, we can 
compute the output signal for any input signal through the process of 
convolution.
The convolution of an N-tap FIR filter with coefficients h[] by an input    
signal x[] is described by the general difference equation:

𝑦 𝑖 = $
!"#

$%&

ℎ[𝑗] ) 𝑥[𝑖 − 𝑗]

• In general, this expression requires N multiplications and N-1 additions to compute a 
single output value
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11-tap FIR code example
#define N 11
#include "ap_int.h"

typedef int coef_t;
typedef int data_t;
typedef int acc_t;

void fir(data_t *y, data_t x) {
coef_t c[N] = { 53, 0, -91, 0, 313, 500, 

313, 0, -91, 0, 53};
static data_t shift_reg[N];
acc_t acc;
int i;

acc = 0;
Shift_Accum_Loop:
for (i = N - 1; i >= 0; i--) {
if (i == 0) {
acc += x * c[0];
shift_reg[0] = x;

} else {
shift_reg[i] = shift_reg[i - 1];
acc += shift_reg[i] * c[i];

}
}
*y = acc;

}

This code is written as a streaming function 
– it receives one sample at a time and must 
therefore store the previous samples.
The for loop is doing two things – it 
performs a multiply and accumulate (MAC) 
operation on the input samples as well as 
shifting values through shift_reg, which 
acts as a FIFO.
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Calculating performance

When deriving the performance of a design, it is important to carefully state 
the metric to be used. It is also important to compare apples with apples.
HLS tools talk about designs in terms of number of cycles and the clock 
frequency. Together, these yield the amount of time in seconds to perform 
some operation.
• Vivado HLS attempts to optimize both #CC and ClkFreq
• It is possible to specify a target frequency to Vivado HLS, which primarily affects how 

much operation chaining is performed by the tool. After generating RTL, Vivado HLS 
provides an initial timing estimate relative to this clock target. However, some uncertainty 
in this timing remains, which is only resolved once the design is placed and routed

• Increasing the clock target frequency is not necessarily the best way to achieve peak 
performance; lower frequencies provide more leeway for multiple dependent operations to 
be combined in the one clock cycle
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Operation chaining

Assuming a multiply op takes 3 ns and an 
add op takes 2 ns, the performance of a 
MAC operation changes depending upon 
the target clock period

Operation chaining is an important 
optimization that Vivado HLS performs in 
order to optimize the final design.
Unfortunately, there is no good rule to pick 
the optimal target clock frequency.
It is often best to explore just a small range 
of target clock periods and focus on 
optimizing other aspects of the design.
With Vivado HLS, start your exploration with 
a clock period of 10ns on the Zynq xc7z020  
device
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Code hoisting
acc = 0;

Shift_Accum_Loop:
for (i = N - 1; i >= 0; i--) {

if (i == 0) {
acc += x * c[0];
shift_reg[0] = x;

} else {
shift_reg[i] = shift_reg[i - 1];
acc += shift_reg[i] * c[i];

}
}

The for loop can be restructured:
acc = 0;

Shift_Accum_Loop:
for (i = N - 1; i > 0; i--) {

shift_reg[i] = shift_reg[i - 1];
acc += shift_reg[i] * c[i];

}

acc += x * c[0];
shift_reg[0] = x;

In our FIR function, not only is the if
statement inside the loop inefficient, it only 
serves a purpose when i==0. 
The statements within the if branch can be 
hoisted out of the loop, with the loop 
bounds being adjusted.

The loop can then more readily be unrolled 
and pipelined since it’s control is less 
complicated.
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Loop fission
acc = 0;

Shift_Accum_Loop:
for (i = N - 1; i > 0; i--) {

shift_reg[i] = shift_reg[i - 1];
acc += shift_reg[i] * c[i];

}

acc += x * c[0];
shift_reg[0] = x;

Splitting the for loop in two:
TDL:

for (i = N - 1; i > 0; i--) {
shift_reg[i] = shift_reg[i - 1];

}
shift_reg[0] = x;

acc = 0;
MAC:

for (i = N - 1; i >= 0; i--) {
acc += shift_reg[i] * c[i];

}

We are doing two fundamentally different 
ops within the for loop – shifting data 
through the shift_reg array and 
multiplying and accumulating samples and 
coefficients.
Loop fission implements each of them in 
their own loop, thereby allowing us to 
optimize each differently.

Sometimes restructuring the code in the 
opposite sense, by merging loops, can 
result in better performance.
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Loop unrolling

TDL:
for (i = N - 1; i > 0; i--) {

shift_reg[i] = shift_reg[i - 1];
}
shift_reg[0] = x;

Manually unrolling the loop by a factor of 2:
TDL:

for (i = N - 1; i > 1; i = i - 2) {
shift_reg[i] = shift_reg[i - 1];
shift_reg[i - 1] = shift_reg[i - 2];

}
if (i == 1) {

shift_reg[1] = shift_reg[0];
}
shift_reg[0] = x;

We can unroll the loop as above 
automatically by inserting the directive:
#pragma HLS unroll factor=2
into the body of the loop just below the for
loop header.

By default, Vivado HLS synthesizes for
loops to execute sequentially. It creates a 
data path that executes sequentially for 
each iteration of the loop, which is area 
efficient but limits parallelism.
Loop unrolling replicates the body of the 
loop by some number of times (called the 
factor) and reduces the number of iterations 
of the loop by the same factor.
Loop unrolling increases the performance 
provided that some (or all) of the statements 
in the loop can be executed in parallel. Note 
that in this case we need to be able to 
perform two reads ops and two writes 
ops from the shift_reg array in the 
same cycle.
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Unrolling the MAC loop

acc = 0;
MAC:
for (i = N - 1; i >= 0; i--) {
acc += shift_reg[i] * c[i];

}

Manually unrolled by a factor of 4:
acc = 0;

MAC:
for (i = N - 1; i >= 3; i -= 4) {
acc += shift_reg[i] * c[i] 

+ shift_reg[i - 1] * c[i - 1] 
+ shift_reg[i - 2] * c[i - 2] 
+ shift_reg[i - 3] * c[i - 3];

}

for (; i >= 0; i--) {
acc += shift_reg[i] * c[i];

}

In the unmodified MAC loop code, the 
sample and coeff value loads are 
independent across iterations, but the 
additions introduce a RAW dependency 
across iterations.
This can be eliminated as shown.
The loop can be unrolled automatically by 
inserting #pragma HLS unroll into the 
code after the for loop header. 
• Unroll the loop completely by not specifying a 
factor argument. For this to work, the bounds of 
the loop must be statically determined (known at 
compile time)

• An optional skip_exit_check argument can be 
added to the directive to avoid generating the final 
for loop.
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Complete loop unrolling

Complete loop unrolling exposes a maximal amount of parallelism at the 
cost of creating an implementation that requires a significant amount of 
resources. 
Thus, it is ok to completely unroll “smaller” for loops. But completely
unrolling a loop with a large number of iterations (e.g., one that iterates a 
million times) is typically infeasible. 
• Often Vivado HLS will run for a very long time and frequently fail to complete after 

hours of synthesis

As a novice, if your design does not synthesize in under 15 minutes, 
consider the effect of your optimizations - it is likely that you used some 
directive that significantly expanded the code, likely in an unintended way.
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Loop unrolling

TDL:
for (i = N - 1; i > 0; i--) {

shift_reg[i] = shift_reg[i - 1];
}
shift_reg[0] = x;

Manually unrolling the loop by a factor of 2:
TDL:

for (i = N - 1; i > 1; i = i - 2) {
shift_reg[i] = shift_reg[i - 1];
shift_reg[i - 1] = shift_reg[i - 2];

}
if (i == 1) {

shift_reg[1] = shift_reg[0];
}
shift_reg[0] = x;

Exercise:
Manually unroll the TDL loop by a factor of 
three.
What changes are needed to the code that 
has been manually unrolled by a factor of 2?
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Loop pipelining
By default, the Vivado HLS tool synthesizes 
for loops in a sequential manner, e.g., the 
for loop in the code to the right will perform 
each iteration of the loop one after another. 
That is, all of the statements in the second 
iteration are performed only when all of the 
statements of the first iteration are complete.

This happens even in cases where it is 
possible to perform statements from the 
iterations in parallel, or to start some 
statements from a later iteration before the 
statements in the former iteration are 
completed (which does not happen unless 
the designer specifically states that it 
should).

acc = 0;
Shift_Accum_Loop:

for (i = N - 1; i >= 0; i--) {
if (i == 0) {

acc += x * c[0];
shift_reg[0] = x;

} else {
shift_reg[i] = shift_reg[i - 1];
acc += shift_reg[i] * c[i];

}
}
*y = acc;

Loop pipelining allows for multiple iterations 
of the loop to execute concurrently.
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Loop pipelining

Notes:
• The array reads take 2 cycles (one 

cycle to present the address to 
memory, and another to retrieve the 
data) and can be performed in 
parallel as they have no 
dependencies

• The multiply is assumed to take three 
cycles, starting in cycle 2

• The addition can be chained with the 
multiply op to complete in the 4th
cycle

• acc is updated at the start of the 5th
cycle
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Consider the MAC loop body from before:
acc = 0;

MAC:
for (i = N - 1; i >= 0; i--) {

acc += shift_reg[i] * c[i];
}

One iteration of the loop could be scheduled 
as shown below:

1 2 3 4 5
Cycle 

Number

+*Read 
shift_reg[]

Read  
c[]



Loop performance metrics
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Consider the MAC loop body from before:
acc = 0;

MAC:
for (i = N - 1; i >= 0; i--) {

acc += shift_reg[i] * c[i];
}

One iteration of the loop could be scheduled 
as shown below:

1 2 3 4 5
Cycle 

Number

+*Read 
shift_reg[]

Read  
c[]

• The iteration latency is the number of 
cycles that it takes to perform one 
iteration of the loop body (in this case, 4 
cycles)

• The loop latency is the number of cycles 
required to complete the entire execution 
of the loop (in this case,  11 x 4 = 44 
cycles, plus one to determine the loop is 
finished, or equivalently, to write the 
result of the last iteration). 

• Vivado HLS defines the loop latency as 
the cycle in which the last output data are 
ready, and therefore does not include the 
last write-back/store cycle.



Loop pipelining
Loop pipelining is an optimization that 
overlaps multiple iterations of a for loop
In this case, three concurrent iterations of the 
MAC loop body are shown

• In our FIR code, the final iteration will 
start in cycle 11 and complete in cycle 
14. Accordingly, the loop latency is 14

• The loop initiation interval (II) is another 
important performance metric and is 
defined as the number of cycles until the 
next iteration of the loop can start (here 
the II=1)

• The desired II can be specified using the 
pipeline directive, e.g.

#pragma HLS pipeline II=2
• The tool will attempt to achieve the 

specified II, or to minimize the II when it is 
not specified. 

• Attempts to create a design with a 
specified II may not succeed due to 
resource constraints or dependencies 
within the code

1 2 3 4 5
Cycle 

Number

+*Read 
shift_reg[]

Read  
c[]

+*Read 
shift_reg[]

Read  
c[]
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+*Read 
shift_reg[]

Read  
c[]

Iteration 1

Iteration 2

Iteration 3
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Pipelining the TDL loop

TDL:
for (i = N - 1; i > 0; i--) {

shift_reg[i] = shift_reg[i - 1];
}
shift_reg[0] = x;

The loop body takes two cycles to read an 
element and the write can be chained in the 
2nd cycle. Thus two sequential iterations 
might be scheduled as

In order to pipeline the loop with an II=1, we 
need to use memory that has two ports: one 
to perform a read, and the other to complete 
the write in the same cycle. With single port 
memory, HLS would be forced to use II=2 to 
pipeline the loop:

1 2 3 4
Cycle 

Number
a)

Read 
shift_reg[]

Write 
shift_reg[]

Read 
shift_reg[]

Write 
shift_reg[]

b)

Iteration 1

Iteration 2

Iteration 3

1 2 3 4
Cycle 

Number

Read 
shift_reg[]

Write 
shift_reg[]

Read 
shift_reg[]

Write 
shift_reg[]

Read 
shift_reg[]

Write 
shift_reg[]
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The resource directive

• The resource directive allows the user to force the Vivado HLS tool to map an operation 
to a particular type of hardware core

• For example, to map the shift_reg array to a single port BRAM core, the directive   
#pragma HLS resource variable=shift_reg core=RAM_1P
could be inserted into the code near the declaration of shift_reg

• Variables can also be mapped to particular types of hardware, e.g.                        
#pragma HLS resource variable=a core=AddSub.DSP
maps the add operation in the expression a = b + c; to a DSP block, rather than using 
LUTs to perform the addition

• In general, it is best to let Vivado HLS decide which resources to use, and if these aren’t 
what you want, then use directives to override these choices
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Bitwidth optimization

• C offers many different data types e.g. int, long, char, float, double
• In software, reducing the data type size can save considerable space
• This is also true for hardware implementations, where, additionally

• smaller operations may require fewer clock cycles to execute, or 
• allow more instructions to be executed in parallel

• HLS generates a custom data path matched to the specific data type   
The op a = b * c will have different latency and resource usage 
depending upon the data type

• If all veriables are 32 bits wide, more primitive Boolean operations (and consequently 
more resources) need to be performed than if they were 8 bits wide

• Additionally, more complex logic typically requires more pipelining to achieve the same 
frequency
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Bitwidth optimization

• While C data types (and their software implementations) vary in width by powers 
of 2, minimal hardware should be customized to the minimum width necessary 
e.g. 10, 12 or 14 bits, say

• Vivado HLS provides arbitrary precision data types through a couple of classes:
• Unsigned: ap_uint<width>, and
• Signed: ap_int<width>, where width is in [1,1024].

• To use these data types, you must use C++ (filename with .cpp extension) and 
#include ”ap_int.h”

• To estimate appropriate data widths, remember to:
• account for the largest magnitude and sign of the data you need to store, 
• sum the widths of variables that are multiplied together, and 
• increment the width of the widest variable when two variables are added together.

• Note that storing a wider data type value to a narrower variable results in the 
most significant bits of the wider value being dropped 20



Bitwidth optimization
#define N 11
#include "ap_int.h"

typedef int coef_t;
typedef int data_t;
typedef int acc_t;

void fir(data_t *y, data_t x) {
coef_t c[N] = { 53, 0, -91, 0, 313, 500, 

313, 0, -91, 0, 53};
static data_t shift_reg[N];
acc_t acc;
int i;

acc = 0;
Shift_Accum_Loop:
for (i = N - 1; i >= 0; i--) {
if (i == 0) {
acc += x * c[0];
shift_reg[0] = x;

} else {
shift_reg[i] = shift_reg[i - 1];
acc += shift_reg[i] * c[i];

}
}
*y = acc;

}

Exercises
1. What is an appropriate data type for the 

coeff array, c?
2. What is an appropriate data type for the 

loop control variable i? 
3. What about for variables of type 

data_t?
4. And how about for acc? 
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Complex FIR filter

typedef int data_t;
void firI1(data_t *y, data_t x); // Re(x)*Re(coeff)
void firQ1(data_t *y, data_t x); // Im(x)*Im(coeff)
void firI2(data_t *y, data_t x); // Im(x)*Re(coeff)
void firQ2(data_t *y, data_t x); // Re(x)*Im(coeff)

void complexFIR(data_t Iin, data_t Qin, data_t *Iout, 
data_t *Qout) {

data_t IinIfir, QinQfir, QinIfir, IinQfir;

firI1(&IinIfir, Iin);
firQ1(&QinQfir, Qin);
firI2(&QinIfir, Qin);
firQ2(&IinQfir, Iin);

*Iout = IinIfir - QinQfir;
*Qout = QinIfir + IinQfir;

}

FIRI1Iin

Qin FIRQ1

FIRI2

FIRQ2

Iin Ifir

QinQfir

Qin Ifir

IinQfir

-

+

Iout

Qout

Complex FIRFilter
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This comes about by virtue of the fact that for complex numbers x = a + jb & y = c + jd,
the product x*y = ac – bd + j(ad +bc), 
whereby FIRI1 computes ac, FIRQ1→bd, FIRI2→bc and FIRQ2→ad



Complex FIR filter

• The fns contain the same code but 
need to be replicated due to the 
different static data and coeffs in 
each

• The fn calls act as interfaces.
• Vivado HLS does not optimize across 

fn boundaries
• Use the inline directive if you want the 

Vivado HLS tool to co-optimize a 
particular fn within its parent fn

• While this can increase the potential for 
benefits in performance and area, it can 
also create a large amount of code that 
the tool must synthesize, which may 
therefore fail to synthesize or results in 
non-optimal code

typedef int data_t;
void firI1(data_t *y, data_t x); // Re(x)*Re(coeff)
void firQ1(data_t *y, data_t x); // Im(x)*Im(coeff)
void firI2(data_t *y, data_t x); // Im(x)*Re(coeff)
void firQ2(data_t *y, data_t x); // Re(x)*Im(coeff)

void complexFIR(data_t Iin, data_t Qin, data_t *Iout, 
data_t *Qout) {

data_t IinIfir, QinQfir, QinIfir, IinQfir;

firI1(&IinIfir, Iin);
firQ1(&QinQfir, Qin);
firI2(&QinIfir, Qin);
firQ2(&IinQfir, Iin);

*Iout = IinIfir - QinQfir;
*Qout = QinIfir + IinQfir;

}
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Concluding remarks

• The first step in the HLS transformation process is to understand the algorithm that is to 
be implemented, otherwise your ability to write (synthesizable and) efficient HLS code is 
likely to be limited

• Creating an optimal architecture requires a basic understanding of how the HLS tool 
works

• It isn’t necessary to understand the exact algorithms used to schedule, bind and allocate 
resources, but having a general idea helps you write code that maps well to hardware

• We discussed several fundamental HLS optimizations including their limitations – more 
examples of these and other techniques will be examined over the next 3 weeks

• The labs are intended to complement the lecture material. This week’s lab asks you to 
carry out some of the exercises from this chapter of the book and report your 
observations by next Monday afternoon.
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