
22T2 COMP4601 –
Design Project B

LiC: Oliver Diessel

What “Design Project B” is about

• Many things: capstone course, reconfigurable systems, use of high-level
synthesis (HLS), research skills

• Lectures to discuss FPGA design using HLS
• Labs to gain experience using an HLS tool and further develop design skills
• Projects to provide opportunity for group-based open-ended investigation
• Seminars to practice research and presentation skills

• Resources available: see the course website
www.cse.unsw.edu.au/~cs4601

2

Assessment

3

Course expectations

1. Read the relevant chapter before each lecture in Weeks 1 – 5
2. Labs (cover quite a bit of ground, so please prepare each week):
― Complete Vivado tutorial chapters to gain exposure to tool use & familiarity
― Handins due Mondays at 5pm in Weeks 3, 4, 6 & 8 (each worth 10% of course mark)
― Start in Week 1 – make sure you have your lab setup working correctly

3. Projects – worth 40%
― Form a group of 3 local or 3 local +1 remote team members by end of Week 2

• Decide on spokesperson and let Oliver know who is on your team
― Agree on a project problem and develop an investigation plan by Week 5

4. Seminars – worth 20%
― Select the topic you are interested in by end of Week 4

• Note limit of 3 people per topic; nominations accepted in first-come, first-served order
― Prepare by reading suggested papers, and beyond, as you see fit 4

Screenshot This Slide

Student Support student.unsw.edu.au/advisors

Equity Diversity and Inclusion (EDI) edi.unsw.edu.au/sexual-misconduct

Equitable Learning Services (ELS) student.unsw.edu.au/els

Academic Skills student.unsw.edu.au/skills

Special Consideration student.unsw.edu.au/special-consideration

Uni and Life in Australia
Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health

Condition

Academic and Study Skills

Special Consideration
Because Life Impacts our Studies and Exams

Student Support - I Need Help With...

My Feelings and Mental Health
Managing Low Mood, Unusual Feelings & Depression

Mental Health Connect

Mind HUB

student.unsw.edu.au/counselling
Telehealth

student.unsw.edu.au/mind-hub
Online Self-Help Resources

1300 787 026
5pm-9am

In Australia Call Afterhours
UNSW Mental Health Support Line

Outside Australia Afterhours
24-hour Medibank Hotline +61 (2) 8905 0307

PP4FPGAs
Ch 1. Introduction

Parallel Programming for FPGAs

• Verilog and VHDL are primarily used to specify designs at the register transfer level (RTL)
• High-level synthesis (HLS) enables a designer to focus on larger architectural questions

than individual registers and cycle-to-cycle operations
• A designer captures behaviour in a program that does not include specific registers or cycles

and an HLS tool creates the detailed RTL micro-architecture
• The text covers a good deal of the uses of HLS and how to optimize code in order to

achieve optimal speedup
• We’ll cover the first 5 chapters of the book in lectures and labs

• Hope that this will inspire you to work through other chapters when time permits
• The text is not primarily about HLS compiler algorithms (scheduling, resource allocation,

binding, etc.)

7

HLS tools

HLS does several things automatically that an RTL designer does manually:
• HLS analyses and exploits the concurrency in an algorithm
• HLS inserts registers as necessary to limit critical paths and achieve a desired clock

frequency
• HLS generates control logic that directs the data path
• HLS implements interfaces to connect to the rest of the system
• HLS maps data onto storage elements to balance resource usage and bandwidth
• HLS maps computations onto logic elements performing user specified and automatic

optimizations to achieve the most efficient implementation

8

Vivado HLS

Mature HLS tools include:
• Xilinx Vivado/Vitis HLS, LegUp and Mentor Catapult HLS

We’ll study Vivado HLS as a representative example
• Other tools may use different syntax or semantics, but the principles remain the same

Vivado HLS requires the following inputs:
• A function specified in C/C++ or SystemC
• A testbench that calls the function and verifies its correctness
• A target FPGA device
• The desired clock period
• Directives guiding the implementation process

9

HLS tools

q HLS can’t handle arbitrary code.
q Many SW concepts are difficult to implement in HW:

• Dynamic memory allocation, recursion, standard libraries, system calls

q On the other hand, HLS can deal with a variety of interfaces:
• DMA, streaming, on-chip memories

q And perform advanced optimizations to create efficient implementations
• Pipelining, memory partitioning, bitwidth optimization

Thus, HLS is both more restrictive but also (through compiler directives)
enhances the input language for the purpose of hardware design

10

Assumptions on Vivado HLS input functions

• No dynamic memory allocation (no operators like malloc(), free(), new(), and
delete())

• Limited use of pointers-to-pointers (e.g., may not appear at the interface)
• System calls are not supported (e.g., abort(), exit(), printf(), etc.)

• They can be used in the code, e.g., in the testbench, but they are ignored (removed)
during synthesis.

• Limited use of other standard libraries (e.g., common math.h functions are
supported, but uncommon ones are not)

• Limited use of function pointers and virtual functions in C++ classes (function
calls must be compile-time determined by the compiler).

• No recursive function calls.
• The interface must be precisely defined.

11

Vivado HLS outputs

• Synthesizable Verilog and VHDL
• RTL simulations based on the design testbench
• Static analysis of performance and resource usage
• Metadata at the boundaries of a design to facilitate integration into a system

Following RTL output, the design can be synthesized using vendor tools to produce a netlist
of FPGA logical elements, which is mapped to the physical FPGA resources during the
place and route process. The resulting FPGA configuration of logic elements, wire
connections and on-chip memories is captured in a bitstream.

12

FPGA architecture refresher

Configuration Bit0
Configuration Bit1
Configuration Bit2

Configuration Bit3
2

in

out

out
0
0
0
1

0 1
1 0
1 1

in[1] in[0]
0 0

out = in[1] & in[0]

a) Lookup Table (LUT) b)

LUTMemory

out

FF

in 3

FF
Select

c) Slice

.. .

Slice

Routing Channel

...

R
ou

tin
g

C
ha

nn
el

...

tchbox

Routing Track
Switch

Swi

I/OBlock

RoutingChannel

Slice

Switchbox

13

Modern FPGAs

• Numerous hardened resources for improved performance
• DSP slices, block RAM, microprocessors, AXI interfaces, high-speed transceivers, clock

managers etc.

BRAM DSP
Block

High
Speed

Interfaces

Microprocessor

14

DSP slices

15

BRAM
Configurable RAM modules that
support different memory layouts
and interfaces
• E.g., Xilinx 36Kb BRAMs can be

organized as 64K/32Kx1-, 16Kx2-, 8Kx4-,
4Kx9-, 2Kx18-, 1Kx36- or 512x72-bit
storage and connected to local, on-chip
buses or processor buses

• Configuration done via vendor tools; a
major advantage of Vivado HLS is that the
designer does not need to worry about
these low-level details

• Used to transfer data between on-chip
resources (e.g. fabric and processor) and
store large datasets on chip

• Only support one or two ports i.e.
accesses per cycle

16

Memory choices

The decision about where to place your application’s data is crucial and one
that we will revisit a number of times throughout this course

Vivado HLS provides options to allow the designer to specify exactly where
and how to store data

External
Memory BRAM FFs

count 1-4 thousands millions
size GBytes KBytes Bits

total size GBytes MBytes 100s of KBytes
width 8-64 1-16 1

total bandwidth GBytes/sec TBytes/sec 100s of TBytes/sec

17

A block diagram showing a hypothetical embedded FPGA design, consisting of I/O
interface cores (shown in blue), standard cores (shown in green), and application specific
accelerator cores (shown in purple). Note that accelerator cores might have streaming
interfaces (Accelerator 2), memory-mapped interfaces (Accelerator 3), or both
(Accelerator 1).

Example FPGA design for video processing

External
Memory

High Performance Interconnect

Low Performance
Interconnect

Accelerator 1

Accelerator 2

Video Input

Video Output

Accelerator 3

Console
Interface

Network
Interface

Storage
Interface

Control
Processor

18

FPGA design process

FPGA designs are often composed of components or IP cores, structured like on the
previous slide
• I/O interface cores at the periphery implement timing critical I/O functions or protocols e.g.

memory controller, video interface, A/D converter
• I/O interfaces are often highly customized for a particular FPGA architecture and hence are

typically provided by the FPGA vendor as reference designs or off-the-shelf components
• Synchronous standard cores, such as processors, on-chip memories, and generic, fixed-

function processing components, such as filters and codecs, are also often provided by
an FPGA vendor, as these do not differentiate a product

• FPGA designs also typically contain customized, application-specific, synchronous
accelerator cores, that are usually created by the system designer, since they contribute
the “secret sauce” that differentiates a design from others

19

Accelerators

• Ideally a designer can quickly and easily generate high-performance custom cores,
perform a design space exploration of feasible designs, and integrate these into their
system in a short timeframe.

• This course focuses on using HLS to design and implement high-performance custom
cores quickly and efficiently.

• A core-based design methodology composes the custom cores with other provided
cores using design integration tools.

• Alternatively, a platform-based design methodology makes use of standard design
templates that combine a stable, verified composition of standard and I/O cores
targeting a particular board. This enables a high-level programmer to integrate different
algorithms or roles within the interface provided by a platform or shell. Accelerators
designed this way can be ported between platforms whose shells have similar
interfaces.

20

Performance characterization

Best to use run time in seconds to compare performance
• A target clock period is provided as a constraint to Vivado HLS, and the tool reports the

number of clock cycles the generated architecture needs to complete processing
• The specified clock period impacts the feasible architectures for the design vis-à-vis which

operations (and how many) can be performed within one clock cycle

Vivado HLS counts cycles by determining the maximum number of registers
between any input and output

21

Task interval & latency

The term task is used to mean a fundamental unit of behaviour, which
corresponds to a C/C++ function invocation in Vivado HLS
• The task latency is the time from when a task starts until it finishes
• The task interval is the time between one task starting and the next starting – it is the

difference between the start times of two consecutive tasks

In many designs, data rate is a key design goal, and depends on the task
latency and the size of the arguments to the function
While all task I/O and computation is bounded by the task latency, the time
at which I/O occurs does not necessarily correspond with the start or end
time of the task

22

Task interval & latency

Task Interval = 1 Task Interval = 13

Task Latency = 10 Task Latency = 13

Pipelined design

Similar to instruction
pipeline in a
microprocessor, but
customized

Non-pipelined design

time

ops

23

A typical HLS function
Let’s take a look at the implementation of
a finite impulse response (FIR) filter
• An FIR filter performs a convolution on an input

sequence with a fixed set of coefficients
e.g. a moving average filter

An HLS tool will analyze the code and
produce a functionally equivalent RTL circuit
• This is a complex process, which we won’t get

into the detail of, but think of it as a compiler, like
gcc, that outputs an RTL description

• It’s not necessary to understand exactly how the
compiler works in order for it to allow the
programmer/designer to work at a higher level of
abstraction

• Yet knowledge of how the compiler works can
enable you to write more efficient code. This is
particularly true for HLS because of the synthesis
options e.g. memory layout, pipelining etc. that
are not typically obvious to someone that only
understands the software flow

#define NUM_TAPS 4

void fir(int input, int ∗output, int taps[NUM_TAPS]) {

static int delay_line[NUM_TAPS] = {};

int result = 0;
for (int i = NUM_TAPS−1; i > 0; i−−) {
delay_line[i] = delay_line[i−1];
}
delay_line[0] = input;

for (int i = 0; i < NUM_TAPS; i++) {
result += delay_line[i] ∗ taps[i];
}

∗output = result;
}

24

Area/throughput tradeoffs

There are numerous possible circuits generated by an HLS tool
One possible circuit executes the code sequentially, like a simple RISC
processor (see next slide)

25

Compiled FIR function

Task takes 49 CC to compute one output
sample if one instruction/cycle is executed
sequentially

fir:
.frame r1,0,r15 # vars= 0, regs= 0, args= 0
.mask 0x00000000
addik r3,r0,delay line.1450
lwi r4,r3,8 # Unrolled loop to shift the delay line
swi r4,r3,12
lwi r4,r3,4
swi r4,r3,8
lwi r4,r3,0
swi r4,r3,4
swi r5,r3,0 # Store the new input sample into the delay line
addik r5,r0,4 # Initialize the loop counter
addk r8,r0,r0 # Initialize accumulator to zero
addk r4,r8,r0 # Initialize index expression to zero
!L2:
muli r3,r4,4 # Compute a byte offset into the delay line array
addik r9,r3,delay line.1450
lw r3,r3,r7 # Load filter tap
lwi r9,r9,0 # Load value from delay line
mul r3,r3,r9 # Filter Multiply
addk r8,r8,r3 # Filter Accumulate
addik r5,r5,"1 # update the loop counter
bneid r5,!L2
addik r4,r4,1 # branch delay slot, update index expression

rtsd r15, 8
swi r8,r6,0 # branch delay slot, store the output
.end fir

In

Out

load
store

branch

26

Area/throughput tradeoffs

There are numerous possible circuits generated by an HLS tool
One possible circuit executes the code sequentially, like a simple RISC
processor (see previous slide)
One characteristic of HLS is that architectural tradeoffs can be made without
needing to fit to the constraints of an instruction set architecture
• HLS designs may generate architectures that issue hundreds or thousands of RISC-

equivalent instructions per clock with pipelines that are hundreds of cycles deep

27

Sequential architecture

By default, Vivado HLS will generate an optimized, but largely sequential
architecture
• Loops and branches are transformed into control logic that enables the registers,

functional units and the rest of the datapath
• Conceptually similar to the execution of a RISC processor except that the program to be

executed is converted to an FSM in the generated RTL rather than being fetched from
program memory

A sequential architecture tends to limit the number of functional units in a
design with a focus on resource sharing over massive parallelism
• Complexity of the control logic can hamper analysis; the behaviour of the control logic

may also be data dependent

28

One tap per clock FIR function

The Vivado HLS tool can be directed
to generate a pipeline by placing a
#pragma HLS pipeline directive
into the body of a function
• Includes a parameter to specify the

initiation interval of the pipeline
A “one tap per clock” architecture
• One mult, one add – results in a task latency

and task interval of 4

input(n)

To Register Resets
and Clock Enables

ta
ps

[]

output(n) Task Latency = 4

Task Interval = 4

In

Out

29

One sample per clock FIR function

A “one sample per clock”
architecture
• 4 mults, 3 adds with task latency and

interval of 1

Other implementations, such as “two
taps per clock” or “two samples per
clock”, which may be needed to
meet higher throughput
requirements, are also possible

taps[0] taps[1] taps[2] taps[3]

input(n)

output(n)

Task Interval = 1

Task Latency = 1

In

Out

30

Controlling the output generated by HLS

In practice, complex designs often include complicated tradeoffs between
sequential architectures and parallel architectures, in order to achieve the
best overall design
• In Vivado HLS, these tradeoffs are largely controlled by the user, through various tool

options and code annotations, such as #pragma directives

31

Restrictions on processing rate

The task interval (and hence throughput) is fundamentally limited by
recurrences (feedback loops) and resource limits
A recurrence is any case where a computation by a component depends
upon a previous computation by the same component
• Examples include the static variables in the FIR code and the accumulator in the one tap

per clock design
• Recurrences fundamentally limit throughput even when pipelining
• Analyzing recurrences and generating hardware that is guaranteed correct are key

functions of HLS tools
• Similarly, understanding algorithms and selecting those without tight recurrences is an

important onus on the designer using HLS

32

Resource limitations

Another key factor limiting the processing rate is resource limitations
One form of resource limitation is associated with the wires at the boundary
of a design, since a synchronous circuit can only capture or transmit one bit
per wire per clock cycle
Another form of resource limitation arises from memories since the number
of accesses per cycle is usually limited
The designer might also create a limitation by restricting the number of
operators that can be instantiated during synthesis
Finally, the coding style used e.g. choice of #pragma directives can limit the
range of architectures that can be generated from the code

33

The importance of code restructuring

Using HLS is not just a matter of adding #pragma directives to your
software code
Kastner stresses the need to have a good understanding of the application
at hand so that optimizations that require rewriting of the code (code
restructuring) can be taken advantage of
• Standard, off-the-shelf code typically yields very poor quality of results that are orders of

magnitude slower than CPU designs, thus it is also important to know how to write code
that the HLS tool will synthesize in an optimal manner

• Restructuring code is an essential step to generate an efficient FPGA design
• Writing restructured code requires significant hardware design expertise and domain-

specific knowledge
• Many of the examples in the text show how to restructure the code for more efficient

hardware design

34

Chapter outline

We’ll be studying the first 5 chapters
of the text in class. You will be
introduced to the parallelization
techniques listed above the red
dashed line.

35

