
Case study: System optimization of
FPGA-accelerated FIR application

Junning Fan
UNSW Sydney

Interface protocols in HLS

• The IO ports are defined with INTERFACE pragma:
• applied on each argument of the synthesised function
• Special case: port =return for the return value, as well as control signals
• E.g. #pragma INTERFACE s_axilite port=a

• Generates data ports or AXI-compliant IO ports:
• ap_none/ap_vld: data port
• s_axi/s_axilite: AXI memory mapped ports
• axis: AXI-stream streaming port
• Offer different IO throughput, latency and resource overhead.

Burst/Streaming
vs AXI-Lite

• AXI-Lite takes at least 3 clock cycles to
transmit a word:
• 1st Clock: Master send read

request, read address
• 2nd Clock: Slave presents data

lines, assert read data valid
• 3rd Clock: Master acknowledges

the read by asserting data ready
• In bursting AXI-4 or streaming AXI-

Stream:
• Burst: Multiple words can be

transmitted with only 1 addressing
cycle

• Streaming: No memory addressing
• Much higher throughput

Function-wide
pipelining

• PIPELINE pragma can be applied to
a function body:
• Pipeline all the operations in a

function body
• Same syntax as pipelining loops
• Pipelining a function unrolls all

loops in the function

HLS code for FIR

#define TAP_DEPTH 128
void fir(float* input, float* output, float
weights[TAP_DEPTH]) {

static float shift_reg[TAP_DEPTH] = {};
float acc = 0;
TDL:for(int i = TAP_DEPTH-1; i >= 1; --i) {

shift_reg[i] = shift_reg[i-1];
}
shift_reg[0] = *input;
MAC:for(int i = 0; i < TAP_DEPTH; ++i) {

acc += shift_reg[i] * weights[i];
}
*output = acc;

}

Default HLS
implementation

with AXI-Lite
interface

HLS pragma for baseline FIR

• Implement the input port as AXI-Lite
(low performance without bursting)

• Implement the output port as AXI-Lite
(low performance without bursting)

• Implement the interface of weights
memory as AXI-Lite (low performance
without bursting)

Pipelined HLS
implementation

with AXI-Lite
interface

HLS pragma for pipelined FIR w/o bursting IO

Pipelines the function with
initialize interval of 3

Partition the array to support
simultaneous read/write in the
unrolled loops

Pipelined HLS
implementation
with AXI-Stream

interface

HLS code for
streaming,pipelining
FIR

typedef struct {
fir_type_t val;
ap_uint<1> last;} io_type_t;

void firOptimized(hls::stream<fir_type_t>& input,
hls::stream<io_type_t>& output_stream, fir_type_t
weights[TAP_DEPTH]) {

static fir_type_t shift_reg[TAP_DEPTH];
fir_type_t acc = 0;
shift_loop: for(int i = TAP_DEPTH-1; i >= 1; --i) {
shift_reg[i] = shift_reg[i-1];

}
shift_reg[0] = input.read();
mac_loop: for(int i = 0; i < TAP_DEPTH; ++i) {

acc += shift_reg[i] * weights[i];
}
io_type_t output;
output.val = acc;
static ap_uint<7> counter = 0;
if (counter++ == TAP_DEPTH-1) {

output.last = 1;
} else {

output.last = 0;
}
output_stream.write(output);

}

Special IO data for streaming in Vivado HLS

Control signal for streaming IO type

HLS pragma for pipelined FIR with streaming

AXI-stream interface

Resource Utilization

Baseline Pipe w/o burst Pipe with stream

LUT 752 25321 28425

FF 613 38809 41534

DSP 5 215 215

Relative throughput 0.337 5.48 22.9

Relative throughput

0.34
5.48

22.90
20.20

0.00E+00
5.00E+00
1.00E+01
1.50E+01
2.00E+01
2.50E+01

Non-opt Opt w/o burst Opt with burst Desktop SW

Relative throughput

Takeaway messages 1

• Programmable logic implementation does NOT guarantee speed-up
• Pipelined/unrolled implementation can result in very large circuit

Bottleneck of each
design
• Types of bottleneck?

• Compute-bound or IO bound?

• Identify bottlenecks of each
design
• Hint: compute the

bandwidth needed for a
design to run at full speed

• Assume:
• Frequency of 160MHz

Baseline HLS

• Bandwidth
needed:

!
""#$

∗
160 ∗ 10$ =
283.687 KBps
• Compute-

bound

Pipelined HLS
with AXI-Lite

• Bandwidth
needed:

!
%
∗

160 ∗ 10$ =
213.3MBps
• IO-bound

Pipelined HLS
with AXI-
Stream

• Bandwidth needed:
!
"
∗ 160 ∗ 10# =
213.3MBps
• Sub-optimal

software
implementation

7.64

20.80 22.75 22.8721.15 19.53 20.68

2.62

5.14 5.46 5.48

1.00

0.34

0.3

0.5

1.0

2.0

4.0

8.0

16.0

32.0

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Re
la

tiv
e

Th
ro

ug
hp

ut
 (L

og
ar

ith
m

ic
)

Task size (# of 128-value-long segments)

PL vs PS executing FIR on Zynq7000

Optimized HLS with streaming IO
Software on Desktop (5950X)
Optimized HLS without bursting IO
Software Baseline on Zynq PS
Non-optimized HLS with non-bursting IO

Takeaway messages 2

• The IO interface should be chosen carefully to meet the bandwidth
requirement of HLS designs
• PS system (software and DDR) should be able to feed data fast

enough to PL system

Thank you!

