
22T2 COMP4601 Chapter 4 Lab/Week 6 Hand-in exercises 19/06/2022
(Notes and questions on PP4FPGAs – Chapter 4 exercises)

During Weeks 4 & 5, you are expected to complete Chapter 6 of the 2020.1 Vivado HLS
Tutorial and to carry out selected exercises from Ch. 4 of the text. Your answers to indicated
exercises should be submitted electronically by 5pm Monday 4 July. This hand-in is worth
10% of your mark in the course.

Completing the exercises below should take 2 – 3 hours after you have completed Chs 2 – 6
of the Vivado HLS Tutorial. The files needed for this lab are contained in the ch4.zip zipfile.
First you’ll take a detailed look at the matrix-vector multiplication code of Figure 4.4, then
you’ll optimize the DFT code of Figure 4.15.

Matrix-vector multiplication exercises

solution1

The matrix-vector multiplication code of Figure 4.4 is contained in
matrix_vector_base.c. This code can be loaded into the project
matrix_vector_proj using the Tcl script matrix_vector_proj.tcl and the Vivado
HLS command prompt: vivado_hls -f matrix_vector_proj.tcl

After you have created the project, run vivado_hls -p matrix_vector_proj from
the Vivado HLS command prompt to open the synthesized baseline solution of the
project in the Vivado HLS GUI.

Describe the performance and resource utilization before adding any directives.

solution2

 Create a new solution from solution1.

Unroll the data_product_loop completely by adding a directive to the directive
script and run synthesis.

 Compare the performance and utilization with solution1.

Explain why you obtain a loop iteration latency of 8.

solution3

 Create a new solution from solution1.

 Pipeline the data_product_loop with the default II and run synthesis.

 Compare the performance and utilization with solution2.

Explain why the iteration latency is 4 and the iteration interval is 1.

solution4

Create a new solution from solution1.

Unroll the data_loop and run synthesis.

Is this worth doing?

solution5

 Create a new solution from solution1.

 Pipeline the data_loop and run synthesis.

 Describe the scheduling of the loop.

Taking both performance and utilization into account, rank the 5 solutions you have
so far in your order of preference and explain your choice.

solution6

 Create a new solution from solution1.

Compare the performance and utilization of the manually unrolled code of Figure 4.6
with that of solution2. (The code is in the file named matrix_vector_base_unroll_
inner.c. Copy this file to matrix_vector_base.c within your Windows directory and
reload the source file in the GUI to confirm that you have copied the code correctly.)
Run synthesis.

solution7

Create a new solution from solution5.

In Windows, copy the file matrix_vector_base_copy.c to matrix_vector_base.c
so as to revert back to the code used for solution1-5. Reload the source file in the
GUI to confirm that you have restored the code correctly.

Add array_partition directives to the M and V_In arrays while pipelining the
data_loop. The effect should be similar to the effect of, but not the same as, the
listing of Figure 4.11. Add the directives %HLS ARRAY_PARTITION variable=M
cyclic factor=2 dim=2 and %HLS ARRAY_PARTITION variable=V_In cyclic
factor=2 dim=1 to the directives script and run synthesis.

Compare the resulting performance and utilization with that of solution5.

solution8

Create a new solution from solution7.

Modify the array_partition directives to use block partitioning and run synthesis.

 Explain the observed performance in the light of solution7.

solution9

 Create a new solution from solution7.

Modify the array_partition directives to implement complete partitioning and
run synthesis.

 Compare solution5, solution7 and solution9 in terms of performance and utilization.

solution10

 Create a new solution from solution9.

 Modify the pipeline directive to target an II=2 and run synthesis.

 Compare solution7, solution9 and solution10.

solution11

Create a new solution from solution9 but set the target clock period to 5 ns. Run
synthesis.

 Explain the loop iteration latency you observe.

 Do you think there is any further improvement in performance possible?

DFT exercises

solution1

The DFT baseline code of Figure 4.15 is contained in dft.cpp1. This code can be
loaded into the project dft_proj using the Tcl script dft_proj.tcl and the Vivado
HLS command prompt: vivado_hls -f dft_proj.tcl

1 There are some minor differences between the listing of Figure 4.15 and the contents of dft.cpp. IN_TYPE
and TEMP_TYPE were set to float so as not to exceed the available number of DSPs on the xc7z020 device and
the expression for w was altered to allow the use of ap_fixed type data.

After creating the project, run vivado_hls -p dft_proj from the Vivado HLS
command prompt to open the synthesized baseline solution of the project in the
Vivado HLS GUI.

Describe the performance and resource utilization before adding any directives.

solution2

 Create a new solution from solution1.

 Pipeline the inner loop labelled dft_loop0 and run synthesis.

Describe the impact of pipelining dft_loop0 on the performance and utilization.
What are your options for further improving performance?

solution3

 Create a new solution from solution2.

 Change IN_TYPE and TEMP_TYPE to be of type ap_fixed<16,4> and run synthesis.

Describe the performance and utilization of the resulting design in comparison to
solution2. Outline the most significant constraints on the performance of this
solution.

solution4

 Create a new solution from solution3.

Swap the inner and outer loops of the source code as explained on pages 97-99. Run
synthesis.

What do you observe? Why? Paste a copy of your loop interchange code into your
report.

